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Malcolm BR, Foxe JJ, Butler JS, Molholm S, De Sanctis P.
Cognitive load reduces the effects of optic flow on gait and electro-
cortical dynamics during treadmill walking. J Neurophysiol 120:
2246–2259, 2018. First published August 1, 2018; doi:10.1152/
jn.00079.2018.—During navigation of complex environments, the
brain must continuously adapt to both external demands, such as
fluctuating sensory inputs, and internal demands, such as engagement
in a cognitively demanding task. Previous studies have demonstrated
changes in behavior and gait with increased sensory and cognitive
load, but the underlying cortical mechanisms remain largely un-
known. In the present study, in a mobile brain/body imaging (MoBI)
approach, 16 young adults walked on a treadmill with high-density
EEG while 3-dimensional (3D) motion capture tracked kinematics of
the head and feet. Visual load was manipulated with the presentation
of optic flow with and without continuous mediolateral perturbations.
The effects of cognitive load were assessed by the performance of a
go/no-go task on half of the blocks. During increased sensory load,
participants walked with shorter and wider strides, which may indicate
a more restrained pattern of gait. Interestingly, cognitive task engage-
ment attenuated these effects of sensory load on gait. Using an
independent component analysis and dipole-fitting approach, we
found that cautious gait was accompanied by neuro-oscillatory mod-
ulations localized to frontal (supplementary motor area, anterior
cingulate cortex) and parietal (inferior parietal lobule, precuneus)
areas. Our results show suppression in alpha/mu (8–12 Hz) and beta
(13–30 Hz) rhythms, suggesting enhanced activation of these regions
with unreliable sensory inputs. These findings provide insight into the
neural correlates of gait adaptation and may be particularly relevant to
older adults who are less able to adjust to ongoing cognitive and
sensory demands while walking.

NEW & NOTEWORTHY The neural underpinnings of gait adap-
tation in humans are poorly understood. To this end, we recorded
high-density EEG combined with three-dimensional body motion

tracking as participants walked on a treadmill while exposed to
full-field optic flow stimulation. Perturbed visual input led to a more
cautious gait pattern with neuro-oscillatory modulations localized to
premotor and parietal regions. Our findings show a possible brain-
behavior link that might further our understanding of gait and mobility
impairments.

dual-task design; EEG; independent component analysis (ICA); mo-
bile brain/body imaging (MoBI); power spectral density

INTRODUCTION

Although we often take walking for granted, human loco-
motion relies on an extensive network of spinal, brain stem,
and subcortical processes (Grillner et al. 2008), with control
mechanisms arising from the cortex (Takakusaki 2013). Par-
ticularly during navigation of complex or unfamiliar environ-
ments, cortical resources are essential to facilitate dynamic
sensorimotor interactions (Rossignol et al. 2006) while main-
taining postural stability (Winter 1995). However, whereas
behavioral studies have previously explored differences in gait
in response to various manipulations in processing load, much
remains unknown about the cortical underpinnings of dual-task
adaptations during locomotion. Only recently have approaches
using scalp electroencephalography (EEG) recordings allowed
for the direct investigation of electrocortical activity during
gait (Gramann et al. 2011; Makeig et al. 2009). Findings
indicate the recruitment of cortical sensorimotor and prefrontal
regions even during steady-state walking, with direct involve-
ment of cortical motor areas implicated in the control of leg
muscle activity (Artoni et al. 2017; Petersen et al. 2012). This
technique also provides the opportunity to assess cortical
activity underlying different walking functions, such as adapt-
ing to the manipulation of sensory inputs (Jacobs and Horak
2007; Varraine et al. 2002) or engaging in various cognitive
tasks (De Sanctis et al. 2014; Kline et al. 2014). Therefore, the
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aim of this study was to assess the effects of both cognitive and
sensory load on gait and neuro-oscillatory activity.

A paradigm well suited to study walking while capturing the
impact of cognitive and sensory demands is the dual-task
walking design (Al-Yahya et al. 2011; Woollacott and Shum-
way-Cook 2002). Walking with and without performing a
secondary task may be compared to measure the effects of
added demands. Findings from previous dual-task walking
studies indicate that whether or not healthy young adults will
exhibit changes in cognitive performance or gait largely de-
pends on the type and complexity of the specific tasks em-
ployed (Al-Yahya et al. 2011; Kelly et al. 2010; Lövdén et al.
2008, Woollacott and Shumway-Cook 2002; Yogev-Selig-
mann et al. 2008). Increased cognitive load may lead to a
decline in performance on the secondary task (Szturm et al.
2013; Yogev-Seligmann et al. 2008), an effect explained in
terms of an interference cost as a result of dual-tasking.
Fluctuations in the motor domain as a result of dual-tasking
have sometimes been interpreted as costs, for example, reduc-
tions in gait velocity (Beauchet et al. 2005; Hollman et al.
2007; Springer et al. 2006) or, when slowing down is not an
option (i.e., treadmill walking), increased stride-to-stride vari-
ability (Szturm et al. 2013). However other studies have found
young adults to exhibit changes in gait that may be construed
as beneficial adaptations, such as reduced cadence and stride
length (Al-Yahya et al. 2011), increased step width (Kline et al.
2014), and decreased variability in spatiotemporal parameters
such as stride time (Lövdén et al. 2008; Wrightson et al. 2016)
or step width (Grabiner and Troy 2005). These modulations
have been interpreted as an adoption of a more cautions gait
pattern, to maintain postural stability under increased load.

In addition to a secondary cognitive task, processing load
during gait may be affected by the introduction of different
sensory manipulations. Locomotion depends on the efficient
integration of multiple sources of sensory information, includ-
ing visual, vestibular, somatosensory, and proprioceptive in-
puts (Campos et al. 2012; Takakusaki 2013). Yet, walking in
humans is an especially visually demanding activity, and we
rely on our visual system to provide crucial sources of infor-
mation during self-directed navigation (Lappe et al. 1999; Patla
1997). One aspect of visually guided locomotion is optic flow,
the visual motion we experience as a result of traveling through
our environment (Gibson 1950, 1958; Lappe and Grigo 1999).
Optic flow is a powerful signal that can be used to control the
parameters of our movements (Warren et al. 2001). For exam-
ple, a change in the speed of optic flow causes people to
modulate their walking speed accordingly (Prokop et al. 1997),
and the direction of optic flow influences heading direction
(Butler et al. 2010; Lappe and Rauschecker 1994; Warren and
Hannon 1988). A number of relevant studies aimed at testing
the effects of sensory input on locomotion have applied full-
field optic flow stimulation while participants walk on a tread-
mill. By studying walking in a virtual reality environment of a
moving corridor, Hollman et al. (2006) found that participants
took shorter strides and wider steps, with increased variability
in step width, compared with walking during the presentation
of a static image (Hollman et al. 2006). In two studies,
McAndrew and colleagues increased sensory load by superim-
posing pseudo-random mediolateral (ML) perturbations on a
virtual reality landscape. Again, participants engaged in what
can be described as a cautions gait pattern, taking shorter and

wider steps with increased variability compared with the un-
perturbed optic flow condition (McAndrew et al. 2010, 2011).
These results illustrate the robust effects of optic flow on
locomotion, as well as the opportunity to manipulate sensory
demands to measure dual-task interference on gait.

Whereas there is a well-established body of literature assess-
ing the effects of dual-task load using behavioral designs
(Woollacott and Shumway-Cook 2002), less is known about
the neural correlates of these processes, particularly for designs
incorporating gross motor behaviors such as walking. Over the
last 10 years, EEG, with its portability, relatively low cost, and
excellent temporal resolution, has emerged as the method of
choice to assess electrocortical functioning during active
movements (Gramann et al. 2011). When utilized in concert
with body motion tracking, this approach is referred to as
mobile brain/body imaging (MoBI) (Gramann et al. 2011,
2014; Makeig et al. 2009). To aid in overcoming the primary
obstacle in recording EEG activity while a subject is in motion,
several different analytical approaches have been successfully
employed to isolate and remove movement artifacts from
cortical signals, including independent component analysis
(ICA) (Gwin et al. 2010; Kline et al. 2015). Recent MoBI
studies have established the viability (De Sanctis et al. 2012;
Gramann et al. 2010) and long-term reliability (Malcolm et al.
2017) of recording event-related potentials (ERPs) during
treadmill and outdoor (De Vos et al. 2014) walking. Other
studies have shown neuronal oscillatory activity localized to
sensorimotor and frontal regions during steady-state walking
(Gwin et al. 2011), providing the opportunity to investigate the
neural underpinnings of gait under dual-task load (Sipp et al.
2013; Wagner et al. 2014). For example, Wagner et al. (2014)
measured the electrocortical dynamics of participants as they
steered an avatar down a virtual alley through force sensors
embedded in the robotic legs of a gait orthosis. In a control
condition, participants walked while tracking a visual target.
Although both visual tasks were of similar load, only the avatar
task required movement-related interactive feedback, which
put additional load onto motor planning. The authors reported
spectral power suppression within the mu (8–12 Hz) and beta
(15–20 Hz) bands in supplementary motor and posterior pari-
etal regions (Wagner et al. 2014). Furthermore, findings of
reduced mu/beta power during walking compared with upright
standing were reported by Seeber et al. (2014, 2015). These
recent MoBI findings align well with extensive prior research
showing strong evidence for mu/beta power suppression as
correlates of cortical activation before and after motor initia-
tion (Pfurtscheller et al. 1997; Pfurtscheller and Lopes da Silva
1999).

In the present study, we increased sensory load by exposing
participants to full-field optic flow stimulation with and with-
out continuous ML perturbations. In addition, we manipulated
cognitive load by having participants either perform or not
perform a go/no-go response inhibition task (Eimer 1993). We
first hypothesized that increased load would be associated with
a more variable, cautions gait pattern and would require a
higher degree of motor activation indexed by mu/beta suppres-
sion. Second, a line of relevant research links bottom-up visual
processing load to spectral power suppression within the alpha
band over occipital-temporal regions (Pfurtscheller et al.
1994). We hypothesized that occipital alpha would be reduced
as participants were exposed to optic flow as well as when
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participants were required to process the visual letters while
performing the cognitive go/no-go task. Finally, a third area of
research shows a link between attention and alpha power over
parietal regions. In one study, participants covertly attended to
one hemifield and detected an embedded target letter while a
series of distractor letters were shown on both sides (Kelly et
al. 2006). Ignoring letters in the unattended hemifield was
shown to increase alpha power over the contralateral hemi-
sphere. This and other studies support the notion that alpha
power reflects active suppression of to-be-ignored stimuli
(Foxe and Snyder 2011). Therefore, it was also hypothesized
that optic flow with ML perturbations, representing unreliable
information to sustain dynamic balance during walking, would
drive alpha power increases over parietal cortex.

METHODS

Participants

Eighteen healthy young adults participated in the experiment. Data
from two participants were excluded due to technical problems in
streaming motion capture recordings; therefore, results reported were
derived from 16 participants (5 women) with a mean age of 25.6 (4.5)
yr [mean (SD)]. All participants were right-handed, had normal or
corrected-to-normal vision, and reported no history of psychiatric,
neurological, or musculoskeletal disorders as well as no intake of
psychoactive medication. Participants were recruited from the labor-
atory’s existing subject pool and from flyers posted at the Albert
Einstein College of Medicine. The Institutional Review Board of the
Albert Einstein College of Medicine approved the experimental pro-
cedures, and all participants provided their written informed consent.
All procedures were compliant with the principles laid out in the
Declaration of Helsinki for the responsible conduct of research.

Stimuli and Procedure

While walking on the treadmill, participants were presented with a
full-field visual display consisting of a star field (200 randomly placed
white dots projected onto a black background). In the two dynamic
optic flow conditions, the stars emanated outward from a central focus
of expansion point, moving steadily with no visual perturbations
(NOP) or oscillating with continuous perturbations in the ML direc-
tion (MLP). Optic flow was programmed from

D�t� � A � sin�0.4 � 2�t� ,

where D(t) is the translation distance (m), A is the amplitude of displace-
ment, and t is time (s). Sinusoidal perturbations in the ML direction were
applied at amplitudes of 0 m (NOP condition) or 0.12 m (MLP condi-
tion). The frequency selected (0.4 Hz) was within the range used in
previous studies of human gait (McAndrew et al. 2010; O’Connor and
Kuo 2009). The star field moved in this manner throughout the duration
of a 3-min walking block. A third condition was also employed in which
the same number of stars was randomly presented across the visual field
projection but did not move, i.e., no optic flow (static condition). On
average, the field of view of the star field subtended 100° horizontally by
100° vertically.

In addition to these three visual conditions, participants were
presented with a go/no-go response inhibition task. Stimuli were
shown in the center of the visual field, not overlapping with the optic
flow. During “task” blocks, participants engaged in the cognitive task
by responding quickly and accurately to the frequently occurring go
trials by clicking a wireless mouse button following the presentation
of the letter “O” but withholding responses during infrequent no-go
trials, designated by the presentation of the letter “X.” The probability
of go and no-go trials was 0.80 and 0.20, respectively. The duration of
each letter presentation was 400 ms, followed by an interstimulus

interval ranging from 200 to 400 ms. A central fixation cross was
shown at the beginning of each block and in between each letter
presentation. The dependent measures for the go/no-go task included
hit rate, the corresponding reaction times for hit trials, and correct
rejection (CR) rate. Hit rate was computed as the percentage of correct
responses following a go stimulus. CR rate, a measure of response
inhibition performance, was determined as the percentage of correctly
withheld responses following a no-go stimulus. To evaluate the effect
of cognitive task load on gait and EEG spectral power, half of the
blocks were designated as “no task,” in which the go/no-go stimuli
were shown but participants were instructed not to respond or cogni-
tively engage in the task. During all blocks, participants were in-
structed to direct their gaze toward the central fixation cross (and
presentation of task-relevant letters). Images were projected centrally
(InFocus XS1 DLP; 1,024 � 768 pixels) onto a black wall ~1.5 m in
front of the participant. The stimulus display was programmed with
Presentation software version 18.1 (Neurobehavioral Systems, Berke-
ley, CA).

With the two factors of visual load (static, NOP, or MLP) and
cognitive task load (task performance or no-task performance), this
design resulted in six different experimental conditions. Participants
performed three blocks of each condition, each lasting 3 min, for a
total recording time of 54 min. Blocks were conducted in a pseudo-
random order and counterbalanced across participants. A practice
block was performed before the main experiment was undertaken. To
minimize fatigue, participants either took breaks after each block or
performed no more than two to three consecutive blocks before taking
a break. A self-selected walking speed was chosen at the beginning of
the experiment and maintained throughout. Average walking speed
was 3.9 km/h (range: 3.2–4.5 km/h). All participants walked while
wearing comfortable shoes and a safety harness. See Fig. 1 for a
representation of the recording setup.

Kinematics Recordings

Three-dimensional kinematics data were collected at 100 Hz using
a nine-camera Optitrack infrared motion capture system and Arena
v.1.5 acquisition software (Natural Point). Each participant wore 10
reflective markers: 4 were placed on the head (attached to the EEG
cap: right and left sides, front and back), and 3 markers were placed
on each foot over the participants’ shoes (on the calcanei and the
second and fifth distal metatarsals).

Electrophysiological Recordings

Continuous EEG was recorded with a 72-channel BioSemi
ActiveTwo system (digitized at 512 Hz; pass band 0.05 to 100 Hz,
24-dB/octave). Presentation software recorded stimulus events and
transmitted to BioSemi Actiview via a parallel cable. Time-syn-
chronized acquisition of stimulus triggers, behavioral responses,
EEG, and rigid body motion tracking was conducted with Lab
Streaming Layer (LSL) software (Swartz Center for Computational
Neuroscience, University of California, San Diego, CA; available
at: https://github.com/sccn/labstreaminglayer).

Data Analysis

All EEG and kinematics data analyses were performed using
custom MATLAB scripts (The MathWorks, Natick, MA) and EE-
GLAB (Delorme and Makeig 2004).

Kinematics. The following dependent measures were used to assess
spatiotemporal aspects of the gait cycle: mean and variability of stride
time, stride length, and step width. Variability was computed as the
coefficient of variation: CV% � (SD/mean) � 100 (Hausdorff 2005).
Additionally, variability in head position in the ML and anteroposte-
rior (AP) directions served as a measure of postural stability and
overall variability in movement position on the treadmill. These
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measures were chosen to reflect commonly reported gait parameters
that may characterize postural instability in virtual reality environ-
ments (Hollman et al. 2006; McAndrew et al. 2010) or under cogni-
tive load (De Sanctis et al. 2014; Hollman et al. 2007; Nankar et al.
2017; Szturm et al. 2013; Wrightson et al. 2016). Heel strikes were
computed from the heel marker trajectory, using an automated peak-
picking function (MATLAB custom scripts) and confirmed by manual
inspection, to identify the point where the heel marker was at the most
anterior point in the AP direction (Dingwell et al. 2010; Zeni et al.
2008). Individual strides were defined as consecutive heel strikes of
the same foot. Stride time was defined as the time between consecu-
tive heel strikes of the same foot, and stride length was calculated as
the sum of each pair of consecutive step lengths that made up each
stride (Alton et al. 1998; Dingwell and Cusumano 2015). Step width
was computed as the lateral distance between the two heel markers at
the time of right heel strike (Kang and Dingwell 2008; Kline et al.
2014; Owings and Grabiner 2004). Displacement in head position was
computed by averaging over all four markers. The means and SD of
each of these measures were calculated over each block, for each
condition, for each participant.

EEG and power spectral density. We employed an ICA and
dipole-fitting approach to preprocess EEG data and compute electro-
cortical dynamics, generally in line with previous MoBI work (Gwin
et al. 2010, 2011; Kline et al. 2014; Sipp et al. 2013; Wagner et al.
2012, 2014). During seated tasks, ICA has long been shown to be
effective at isolating various generators of task-evoked cortical activ-
ity underlying a specific cognitive function (Onton et al. 2006) from
artifactual sources such as eye and muscle-related noise (Delorme et
al. 2007; Jung et al. 2000). More recently, this technique has been

successfully used in conjunction with procedures that model indepen-
dent components (ICs) as equivalent current dipoles (Oostenveld and
Oostendorp 2002), to separate and remove gait artifacts and estimate
the location of resulting neural sources (Akalin Acar and Makeig
2013; Gwin et al. 2010, 2011; Kline et al. 2014). EEG data were first
high-pass filtered at 1 Hz with a zero-phase finite impulse response
(FIR; order 5632) filter (Winkler et al. 2015), and then all blocks for
each subject were concatenated into one data set. Noisy channels were
identified and removed by visual inspection and by automatic detec-
tion of channels with signals more than five times the SD of the mean
across all channels (Wagner et al. 2012). Remaining channels were
re-referenced to a common average reference. Continuous data were
then subjected to a manual visual inspection resulting in the rejection
of any sequences that contained large or nonstereotypical artifacts.
Next, an extended ICA decomposition was performed using default
training mode parameters (Makeig et al. 1996).

Resulting ICs were coregistered with a standard Montreal Neuro-
logical Institute (MNI) boundary element head model and fit with
single equivalent current dipole models using the DIPFIT toolbox in
EEGLAB (Delorme et al. 2012; Oostenveld and Oostendorp 2002).
Only ICs for which the estimated dipole model was located within the
brain and explained �85% of the variance of the IC scalp map were
retained (Gwin et al. 2011; Sipp et al. 2013). ICs that were clearly
artifactual were rejected; these could have included activity originat-
ing from eye blinks, bad electrodes, cable sway, and muscle activity
noise (Snyder et al. 2015). Two experienced EEG raters, B.R.M. (first
author) and P.D. (senior author), visually inspected, compared, and
discussed their ratings of ICs. Rejection criteria were based on
topography, spectra, component activation time course, and estimated
dipole location (Jung et al. 2000). For example, to determine that
probable brain ICs were not contaminated with muscle noise, spectral
power plots extending out to 100 Hz were examined to determine that
ICs maintained the 1/f power roll-off.

Following this procedure, an average of 10 brain-related ICs per
participant (ranging from 6 to 16 ICs) were retained for further
analyses. ICs were clustered across participants with EEGLAB clus-
tering routines using the parameters of 3D dipole location, scalp
topography, and power spectra (3–45 Hz) (Onton and Makeig 2006).
With the use of principal components analysis, feature vectors were
reduced to 10 principal components and clustered using a k-means
algorithm implemented in EEGLAB (Gwin et al. 2011), with ICs
further than 3 SD from any of the resulting cluster centers marked as
outliers (Wagner et al. 2012). Only clusters that included ICs from at
least half of the participants were retained for further analysis,
resulting in the eight clusters reported in this article. However, please
note that RESULTS and DISCUSSION will focus on a more limited subset
of clusters in line with our hypotheses, specifically those clusters
localized to premotor, parietal, and occipital regions. It should addi-
tionally be acknowledged that the clustering of spatially resolved EEG
activity is an estimation of the underlying cortical network. Therefore,
not finding components in a certain region might not necessarily
reflect a lack of involvement from that region, but rather a variety of
factors, including the particulars of data processing and recording.
Finally, power spectral density (PSD) was computed using Welch’s
method (Welch 1967). Periodograms were obtained in windows of
512 samples (1 s), a fast Fourier transform (FFT) length of 1,024, with
50% overlap, and windowed with a Hamming window of the same
length as the segment. The subsequent periodograms were averaged
over all ICs in each cluster to produce an estimation of the absolute
PSD for four frequency bands of interest: theta (3–7 Hz), alpha/mu
(8–12 Hz), beta (13–30 Hz), and gamma (31–45 Hz).

Statistical analyses. Measures of cognitive task performance (re-
action times, hit rate, and CR rate) were evaluated with one-way
repeated-measures ANOVA, for the factor of visual load (static, NOP,
and MLP). Gait and head position data were analyzed with two (task
load) � three (visual load) repeated-measures ANOVA. Because
walking speed has a direct relationship with stride length and stride

Fig. 1. Representation of recording apparatus. A participant is shown walking
on the treadmill facing the optic flow display while wearing a 72-channel EEG
cap, with motion capture markers on the head and feet.
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time (Dingwell et al. 2010; Kang and Dingwell 2008), walking speed
was included as a covariate in the analysis of these gait parameters.
The covariate was mean-centered, i.e., deviations from the mean
speed were used instead of the raw values to avoid interfering with the
test of the main effects (Delaney and Maxwell 1981). For the analysis
of PSD, separate two (task load) � three (visual load) repeated-
measures ANOVA were performed for each IC cluster and frequency
band of interest. Post hoc tests were corrected for multiple compari-
sons using the Tukey-Kramer procedure (Tukey 1949). Greenhouse-
Geisser corrections were applied when appropriate, but original de-
grees of freedom are reported. Statistical analyses were performed
with IBM SPSS (v. 24).

RESULTS

Go/No-Go Behavioral Performance

There was a significant effect of visual load on reaction
times (RTs; F2,30 � 3.88, P � 0.03). Follow-up paired com-
parisons revealed longer RTs for the NOP condition [324.4
(28.8) ms] compared with the static star field [315.3 (26.9)
ms; P � 0.03]. RTs elicited during the MLP condition
[320.5 (31.3) ms] did not significantly differ from the other two
conditions (all P � 0.05). There was no effect of visual load on
hit rate (P � 0.53), demonstrating comparable performance
between the static [97.8% (2.2%)], NOP [97.1% (4.7%)], and
MLP [97.9% (2.0%)]. Likewise, participants exhibited similar
CR rates across conditions (P � 0.92), indicating approxi-
mately equal ability to withhold responses on no-go trials

during the static [70.7% (12.1%)], NOP [69.8% (11.2%)], and
MLP [70.3% (14.2%)] visual conditions.

Gait and Posture

Average and variability (CV%) of stride time, stride length,
and step width for all six experimental conditions are presented
in Fig. 2.

Stride time. For average stride time, there was a main effect
of task load (F1,14 � 8.51, P � 0.01), showing that participants
took significantly faster strides when engaged in the task
[1,179 (75) ms] compared with no-task blocks [1,189 (78) ms].
Furthermore, there was an interaction between task load and
visual load (F2,28 � 3.99, P � 0.03). Post hoc comparisons
indicated a significant reduction in stride time for the MLP
condition relative to both the static condition (P � 0.023) and
the NOP condition (P � 0.014) only during no-task blocks. No
significant effects were found for stride time variability.

Stride length. There were significant effects of task load
(F1,14 � 11.85, P � 0.004) and visual load (F2,28 � 3.59, P �
0.04) on average stride length. In line with the findings outlined
above for stride time, participants took overall shorter strides
when engaged in the task [1,423 (115) mm] compared with
no-task blocks [1,438 (122) mm]. There was also an interaction
between these two factors (F2,28 � 5.43, P � 0.01), driven by
significantly shorter strides taken during the MLP condition
relative to the static (P � 0.009) and the NOP conditions (P �

Fig. 2. Mean and variability (CV, coefficient of variation) of all gait measurements. Stride time (left), stride length (middle), and step width (right) are shown
for all experimental conditions. Error bars represent SE. *P � 0.05. NOP, optic flow condition with no perturbations; MLP, optic flow condition with continuous
perturbations in the mediolateral direction.
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0.033) only during no-task blocks. For stride length variability,
no effects reached the level of significance.

Step width. Visual load had a significant effect on average
step width (F2,28 � 7.14, P � 0.003), reflecting the finding that
compared with the static visual condition, participants walked
with wider steps during both the NOP (P � 0.005) and the
MLP blocks (P � 0.041). Step width variability showed a
robust effect of task load (F1,14 � 9.53, P � 0.008), with
participants exhibiting more variable step widths when not
performing the cognitive task [10.67% (3.5%)] compared with
task blocks [9.52% (2.7%)].

Head position. Figure 3 shows the mean (SD) head position
in the ML and AP directions. In the ML direction, there was a
main effect of cognitive task load (F1,15 � 8.56, P � 0.01),
indicating more stability in lateral head position when partic-
ipants performed the cognitive task [26.7 (9.2) mm] in contrast
to when they walked without engaging in the task [29.6 (10.8)
mm].

There was also a main effect of task load for head position
variability in the AP direction (F1,15 � 10.12, P � 0.006),
similarly indicating decreased variability when participants
performed the task [33.5 (18.0) mm] compared with when they
only walked [44.8 (19.2) mm]. Additionally, there was an
interaction between cognitive and visual load (F2,30 � 7.33,
P � 0.003). Post hoc comparisons revealed a trend toward
reduced AP head position variability with increased visual load
(P � 0.09) during no-task blocks.

Power Spectral Density

Eight clusters were localized to cortical areas and were
composed of ICs from at least half of the participants. Table 1

lists the number of ICs and subjects included in each cluster
and the approximate anatomical location (Brodmann area and
Talairach coordinates) of cluster centroids. Figure 4 illustrates
the location of each of the ICs belonging to each cluster,
plotted on the MNI brain. Note that Figs. 5–7 serve to depict
detailed information (average topography, IC dipole locations,
and average power spectral density) of electrocortical clusters
found over regions that were relevant to our hypotheses.
Additionally, bar plots highlighting significant modulations for
specific frequency bands are limited to frequencies that are
central to our hypotheses.

Occipital cortex clusters. Figure 5 shows scalp topography,
IC dipole locations, and average PSD for two clusters over
right and left occipital cortex. Topographies show lateralized
distributions over right and left occipital scalp regions. Bar
plots emphasize significant modulations in alpha and beta
frequencies for the right occipital cluster and for the alpha band
in the left-lateralized cluster.

The right occipital cluster, composed of 12 ICs, exhibited
robust differences in spectral power attributable to visual load
in theta (F2,22 � 8.94, P � 0.008) and alpha bands (F2,22 �
21.50, P � 0.001). Post hoc comparisons revealed reduced
power for the NOP and MLP optic flow conditions compared
with the static condition (all P � 0.046). The beta range also
exhibited an effect of visual load (F2,22 � 4.18, P � 0.05),
with reduced power during the NOP compared with the static
condition (P � 0.015). Furthermore, there was a strong effect
of performing the cognitive task on alpha power (F1,11 �
14.15, P � 0.003), with decreased spectral power in alpha
associated with increased task load. Finally, a significant in-
teraction between task load and visual load was found for the

Fig. 3. Average variability in head position
in the mediolateral (ML) direction (left) and
anteroposterior (AP) direction (right) for all
experimental conditions. Error bars repre-
sent SE. *P � 0.05. NOP, optic flow condi-
tion with no perturbations; MLP, optic flow
condition with continuous perturbations in
the ML direction.

Table 1. Clusters of independent electrocortical sources

Functional Area Brodmann Area Talairach Coordinates (x, y, z) No. of Subjects and ICs

Medial occipital lobe, lingual gyrus BA17 11, �94, �10 12 (14 ICs)
Right occipital BA19 47, �73, �1 11 (12 ICs)
Left occipital BA19 �43, �71, 14 12 (14 ICs)
Left superior temporal gyrus BA22 �47, �17, �6 10 (12 ICs)
Right inferior parietal lobule BA40 43, �34, 36 8 (10 ICs)
Parietal lobe, precuneus BA7 12, �62, 34 11 (15 ICs)
Supplementary motor area BA6 �6, �16, 45 14 (23 ICs)
Limbic lobe, anterior cingulate BA24 1, 25, 22 14 (15 ICs)

Data indicate the approximate location (Brodmann area and Talairach coordinates) of cluster centroids for all clusters located in the cortex and containing
independent components (ICs) from more than half of the participants.
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gamma band (F2,22 � 4.96, P � 0.02), with a significant
reduction in power for the NOP relative to the static condition
(P � 0.011), specifically during no-task blocks.

For the IC cluster located in left occipital cortex made up of
14 ICs, modulations in spectral power were observed only in
the alpha frequency range. There was a robust effect of visual
load (F2,26 � 10.76, P � 0.004), with a reduction in alpha
power observed for both dynamic conditions (all P � 0.04)
compared with the static condition. Finally, for the cluster of
14 ICs located over medial occipital cortex, no effects reached
the level of significance.

Temporal and parietal cortex clusters. For the cluster local-
ized to the left superior temporal gyrus composed of 12 ICs,
visual load had a significant effect on the spectral power of
both the theta (F2,22 � 7.00, P � 0.02) and alpha bands
(F2,22 � 9.65, P � 0.001). Both showed reductions in power
associated with increased optical flow input (all P � 0.05),
with no differences between the two dynamic conditions (all
P � 0.05). Figure 6 shows scalp topography, dipole location,
and power spectra for the two parietal clusters. Topographies
show that both parietal clusters are distributed over the right
scalp region. For the cluster of 10 ICs localized to the right

Fig. 4. Approximate locations of electrocortical
sources: medial right and left occipital cortex clus-
ters (yellow), left superior temporal gyrus (brown),
inferior parietal lobule (light blue), precuneus
(red), supplementary motor area (dark blue), and
anterior cingulate cortex (green).

Fig. 5. Occipital cortex clusters. Scalp topography, dipole location (blue dots indicate the location of each independent component, red dots represent the cluster
centroid), and average power spectral density of right (A) and left (B) occipital clusters. Error bars represent SE. *P � 0.05. NOP, optic flow condition with no
perturbations; MLP, optic flow condition with continuous perturbations in the ML direction.
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inferior parietal lobule (IPL), the only significant modulation in
spectral power was observed for the factor of visual load in the
alpha band (F2,18 � 5.94, P � 0.01).

The precuneus cluster (made up of 15 ICs) exhibited signif-
icant modulations in spectral power for the alpha (F1,14 �
21.07, P � 0.001) and beta bands (F1,14 � 13.16, P � 0.003)
as a result of the cognitive task, with a relative reduction during
task engagement. Additionally, visual load affected all fre-
quency bands of interest: theta (F2,28 � 20.09, P � 0.001),
alpha (F2,28 � 15.63, P � 0.001), beta (F2,28 � 10.33, P �
0.001), and gamma (F2,28 � 3.66, P � 0.04). Post hoc com-
parisons revealed power reductions within theta, alpha, and
beta bands during both optic flow conditions relative to the
static condition (all P � 0.01). In the gamma range, MLP
produced reduced power compared with the static star field
(P � 0.012). Finally, there was an interaction between task
load and visual condition for the alpha band (F2,28 � 5.94, P �

0.007). Post hoc paired comparisons failed to reach levels of
significance after adjustment for multiple comparisons.

Frontal cortex clusters. The final two clusters localized to
supplementary motor area (SMA) and anterior cingulate cortex
are depicted in Fig. 7. Scalp maps reveal a rather central
distribution. For the SMA cluster of 23 ICs, significant changes
in spectral power were found in the theta range linked to
cognitive load (F1,22 � 9.41, P � 0.006), with increased power
when participants performed the cognitive task compared with
when they did not. Significant effects of visual load on spectral
power were observed in the theta (F2,44 � 5.01, P � 0.02),
alpha (F2,44 � 29.52, P � 0.001), and beta bands (F2,44 �
17.20, P � 0.001). Post hoc comparisons revealed reduced
spectral power within alpha band during both NOP and MLP
conditions (all P � 0.004) relative to the static. Additionally,
for frequencies in the alpha range, there was a significant
interaction between task load and visual condition (F2,44 �

Fig. 6. Parietal cortex clusters. Scalp topography, dipole location (blue dots indicate the location of each independent component, red dots represent the cluster
centroid), and average power spectral density of inferior parietal lobule (A) and precuneus (B) clusters. Error bars represent SE. *P � 0.05. NOP, optic flow
condition with no perturbations; MLP, optic flow condition with continuous perturbations in the ML direction.

2253IMPACT OF VISUAL AND COGNITIVE LOAD ON GAIT AND EEG

J Neurophysiol • doi:10.1152/jn.00079.2018 • www.jn.org

Downloaded from www.physiology.org/journal/jn by ${individualUser.givenNames} ${individualUser.surname} (147.252.229.037) on November 7, 2018.
Copyright © 2018 American Physiological Society. All rights reserved.



5.77, P � 0.01), driven by consistent power suppression across
both NOP and MLP relative to the static condition, only during
the no-task blocks (all P � 0.029). For the cluster of 15 ICs
localized to anterior cingulate cortex, significant changes in
spectral power were observed only in the lower frequencies. In
the theta range, spectral power significantly increased during
performance of the go/no-go task compared with no-task
blocks (F1,14 � 11.61, P � 0.004). Visual load significantly
affected spectral power in both the theta (F2,28 � 10.16, P �
0.001) and alpha frequency ranges (F2,28 � 10.13, P � 0.001).
This effect was indicative of greater power for the static visual
condition compared with both the NOP (all P � 0.01) and
MLP conditions (all P � 0.009).

DISCUSSION

The objective of the current dual-task walking study was to
examine changes in gait and cortical activity in response to
sensory and cognitive load. During two dynamic visual condi-
tions, a pattern of optic flow created by the movement of a star
field radiating outward generated a sense of forward move-
ment. Participants walked while either performing or not per-
forming a cognitive go/no-go task. The optic flow was motion-
less projected onto the wall (static), moved steadily with no

perturbations (NOP), or oscillated with continuous mediolat-
eral perturbations (MLP). We hypothesized that increases in
sensory load from static, NOP to MLP would result in in-
creases in stride variability and sensorimotor activation. In-
creased activation of sensorimotor regions was indexed by
suppression of spectral power in the mu and beta bands
(Neuper et al. 2006; Pfurtscheller and Lopes da Silva 1999).
Furthermore, we hypothesized that visual processing load (dy-
namic star field as well as the go/no-go letters) would lead to
power suppression within the alpha band over occipital-tem-
poral regions (Pfurtscheller et al. 1994). Finally, we hypothe-
sized that sensory load, particularly as participants were chal-
lenged to sustain dynamic balance during the MLP condition,
would lead to higher alpha power over parietal cortex, because
higher power within the alpha band over these regions has been
proposed as an attentional mechanism to suppress task-irrele-
vant information (Foxe et al. 1998; Foxe and Snyder 2011).

We found effects of sensory load on gait and head position
as well as on spectral power in the alpha- and beta-frequency
bands. Participants took shorter strides and wider steps with
increased sensory load. In addition, average head position
variability in the AP direction decreased as the amount of
sensory load increased. The latter finding was only robust

Fig. 7. Frontal cortex clusters. Scalp topography, dipole location (blue dots indicate the location of each independent component, red dots represent the cluster
centroid), and average power spectral density of clusters localized to the supplementary motor area (A) and the anterior cingulate cortex (B). Error bars represent
SE. *P � 0.05. NOP, optic flow condition with no perturbations; MLP, optic flow condition with continuous perturbations in the ML direction.
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during the no-task condition. These findings are somewhat
inconsistent with our hypotheses, namely, that gait would
become more variable and unstable under increased load.
Instead, our young adult participants adjusted their gait by
taking wider steps and maintaining a more central position on
the treadmill, thereby engaging in possibly a more effortful
strategy to counteract the effects of unreliable sensory load and
uphold postural control.

What Are the Neural Underpinnings of Gait Adaptation
Associated with Incongruent Sensory Information?

We report power modulations in neuro-oscillatory activity
localized to SMA, right IPL, and the precuneus, regions pre-
viously implicated in motor planning and intention as well as
spatial processing of visually guided actions (Halsbandet al.
1993; Kravitz et al. 2011). For the premotor region (SMA),
spectral power reduction was observed in mu and beta bands
associated with the dynamic optic flow compared with the
static condition. We also observed suppression in the theta
band during the MLP condition relative to both the static and
NOP conditions. Prior studies have shown mu/beta desynchro-
nization in sensorimotor and premotor regions during the
preparation and execution of upper and lower limb movements
(Pfurtscheller et al. 1997; Pfurtscheller and Lopes da Silva
1999), and MoBI studies have revealed that power modulation
of mu/beta rhythms are also observable during steady-state
walking (Seeber et al. 2014; Severens et al. 2012; Wagner et al.
2014, 2016). For example, Wagner et al. (2016) investigated
gait adaptation by requiring participants to match their cadence
to an auditory pacing tone. After a shift in pacing tempo, beta
power suppression was observed in SMA and parietal regions.
In addition, Oliveira et al. (2017) manipulated visual input by
having participants walk with eyes open and eyes closed.
Shifting or increasing load onto nonvisual sensory modalities
reduced stride time and resulted in significant reductions in
theta power, particularly during the double-support phase of
gait (Oliveira et al. 2017). In line with previous findings, we
suggest that our results show that healthy participants may
adjust their gait in response to incongruent sensory inputs and
that gait adaptation is accompanied by greater neural excitation
in premotor regions. This brain-behavior link may provide
significant insight into gait adaptation deficits in aging (Mal-
colm et al. 2015) and in patients with neurological gait disor-
ders (Duffell et al. 2017; Zijlstra et al. 1998).

Also of importance are the effects of cognitive load. When
performing the inhibitory control task, participants exhibited
decreased variability in step width and head position in both
directions. The significant interaction between cognitive and
sensory load for AP head position variability might suggest
that performing the go/no-go task attenuated the effects of
sensory load. Prior dual-task walking findings seem to go along
with these results, given that Grabiner and Troy (2005) also
observed decreased step width variability and a more conser-
vative gait under cognitive load. Additionally, Lövdén et al.
(2008) observed that gait variability decreased when young
adults performed a moderately difficult cognitive task. They
contend that an external focus of attention is beneficial to
motor performance and that there will be no cross-domain
competition resulting in costs, as long as cognitive load re-
mains moderate (Lövdén et al. 2008). Of note, we also found

increased theta power while participants performed the go/
no-go task. If and how coupling of cognitive-motor processes
are linked to our finding of increased theta power is an open
question.

For the posterior parietal regions (right IPL and precuneus),
power in alpha, beta, and gamma bands were reduced during
increased sensory load conditions, consistent with previous
MoBI investigations (Gwin et al. 2011; Lau et al. 2014;
Wagner et al. 2012, 2014). Furthermore, other studies have
underscored the role of posterior regions for multisensory
guidance of movements as well as spatial processing of visu-
ally guided actions (Kravitz et al. 2011; Limanowski and
Blankenburg 2016; Marigold and Drew 2017). For example,
Marigold and Drew (2017) recoded from area 7 of the posterior
parietal cortex (PPC) in cats walking on a treadmill and
stepping over a moving obstacle. They found distinct popula-
tions that signaled time to contact with the obstacle (Marigold
and Drew 2017). Based on these and other findings, the PPC
has been proposed as a sensorimotor interface involved in
multisensory integration of ongoing movements (Buneo et al.
2002; Limanowski and Blankenburg 2016). Our findings
showing alpha and beta power suppression may indicate PPC
activation to resolve unreliable visual information and may
signify increased cortical activation in areas involved in main-
taining gait stability (Clayton et al. 2015).

For the occipital regions, we found strong effects of sensory
and cognitive load on spectral power in alpha as well as other
frequency bands. In line with previous findings, we showed
that alpha suppression occurred when participants were ex-
posed to the dynamic star field as well as when they were
required to process the go/no-go task letters. Alpha power
suppression over occipital regions is assumed to reflect cortical
excitation related to various stages of stimulus processing
(Pfurtscheller et al. 1996). Interestingly, presentation of go/
no-go letters per se did not evoke right occipital alpha sup-
pression; it occurred only when participants were required to
perform the go/no-go task. In contrast, presentation of the
dynamic star field evoked alpha suppression even when there
was no explicit requirement to process the optic flow. The
go/no-go letters were presented centrally with a visual angle of
4°. In contrast, the optic flow stimulus was projected on the
wall and extended 100° in the horizontal and vertical direc-
tions. Our findings seem to support differential deployment of
attention or gating for these two types of visual inputs.

Furthermore, numerous studies by our group have estab-
lished alpha power increases over parietal regions as a mech-
anism of attentional inhibition of to-be-ignored information
(Foxe et al. 1998; Foxe and Snyder 2011; Kelly et al. 2006;
Snyder and Foxe 2010; Worden et al. 2000). In the present
study, we hypothesized that alpha power would increase while
participants were exposed to the dynamic star field as a means
to suppress unreliable sensory information that would other-
wise compromise gait stability. Instead, our findings showed
parietal alpha power decreases during optic flow exposure. We
speculate that attentional modulation of alpha might be rela-
tively subtle and therefore masked by parietal alpha modula-
tion related to multisensory control of movement (Kravitz et al.
2011).

There are a few methodological issues that should be con-
sidered when interpreting the results of this study. One is that
participants walked on a treadmill as opposed to overground.
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Some studies reported similar kinematic and kinetic parameters
between treadmill vs overground gait (Lee and Hidler 2008;
Riley et al. 2007). However, others have found significant
differences (Alton et al. 1998; Dingwell et al. 2001), including
a reduction in variability of several spatiotemporal measures
during treadmill walking (Hollman et al. 2016; Wrightson and
Smeeton 2017). Additionally, in a study with older adults,
there was found to be a greater effect of somatosensory
feedback on prefrontal cortex activation during treadmill com-
pared with overground walking (Clark et al. 2014). Therefore,
this aspect of our design may have had an influence on the lack
of significant differences in stride time and stride length vari-
ability across task conditions. However, although slowing
down may not be an option, it is the case that meaningful
adjustments of motoric behavior may be assayed with treadmill
walking, as our results clearly demonstrate. Also, the advan-
tages of using treadmill walking in dual-task paradigms, in-
cluding the ability to acquire data across hundreds of strides in
precisely controlled environments, makes for a more valid
between-groups comparison. Nevertheless, questions if and
how treadmill findings generalize to overground walking are
valid. An additional limitation is that our participants walked at
a relatively slow walking speed (1.1 m/s) compared with the
average adult overground walking speed of ~1.4 m/s (Bohan-
non 1997). However, we must take into account that they
performed this experiment while walking in low light, in a
harness, with EEG wires tethered to an overhead platform.
Moreover, other mobile EEG studies have reported similar or
even slower walking speeds. For example, for walking over-
ground, Beurskens et al. (2016) found that, on average, young
adults walked 1.3 m/s while engaged in an auditory oddball
task and at ~1.1 m/s when concurrently engaged in an addi-
tional motor task. For treadmill walking, Gwin et al. (2010)
had young participants walk at 0.8 and 1.25 m/s, and Kline et
al. (2014) found no changes in either cognitive task perfor-
mance or electrocortical activity across four different walking
speeds ranging from 0.4 to 1.6 m/s.

Conclusions

By utilizing an ICA and clustering approach to isolate
cortical sources supporting dual-task walking, this study has
provided insights into the neural underpinnings of gait adap-
tation. We found that the ability to adopt a more cautions
pattern of gait was accompanied by mean spectral power
modulation in frontoparietal activity clusters, regions previ-
ously implicated in motor planning and sensory guidance of
movement. These findings may be relevant for applications
such as neurorehabilitation, for example, to decode user inten-
tions from EEG in brain-computer interfaces (Kilicarslan et al.
2013; Wagner et al. 2012). Additionally, valuable information
may be gained in relation to monitoring the neural correlates
underlying disease progression and rehabilitation in diseases
such as multiple sclerosis and Parkinson’s disease (Boyd et al.
2007; Kelly et al. 2012). Finally, older adults often have
difficulty adapting to additional demands during locomotion
(Beurskens and Bock 2012) and frequently show evidence of
decline in proprioceptive, vestibular, and somatosensory pro-
cessing (Goble et al. 2009; Hay et al. 1996), factors that may
increase fall risk (Ayers et al. 2014; Setti et al. 2011). MoBI
approaches in virtual reality environments (e.g., introducing

visual perturbations) could be employed in combination with
gait training strategies to successfully challenge walking abil-
ities, with the aim of reducing fall risk in vulnerable popula-
tions.
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