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we first asked whether the velocity profile of a visual 

trajectory affects discrimination performance in a head-

ing task. Participants performed a two-interval forced 

choice heading task while stationary. They were asked 

to make heading discriminations while the visual stimu-

lus moved at a constant velocity (C-Vis) or with a raised 

cosine velocity (R-Vis) motion profile. Experiment 2 was 

designed to assess how the visual and vestibular veloc-

ity profiles combined during the same heading task. In 

this case, participants were seated on a Stewart motion 

platform and motion information was presented via vis-

ual information alone, vestibular information alone or 

both cues combined. The combined condition consisted 

of congruent blocks (R-Vis/R-Vest) in which both visual 

and vestibular cues consisted of a raised cosine velocity 

profile and incongruent blocks (C-Vis/R-Vest) in which 

the visual motion profile consisted of a constant velocity 

motion, while the vestibular motion consisted of a raised 

cosine velocity profile. Results from both Experiments 

1 and 2 demonstrated that visual heading estimates are 

indeed affected by the velocity profile of the movement 

trajectory, with lower thresholds observed for the R-Vis 

compared to the C-Vis. In Exp. 2 when visual–vestibular 

inputs were both present, they were combined in a statis-

tically optimal fashion irrespective of the type of visual 

velocity profile, thus demonstrating robust integration of 

visual and vestibular cues. The study suggests that while 

the time course of the velocity did affect visual heading 

judgments, a moderate conflict between visual and ves-

tibular motion profiles does not cause a breakdown in 

optimal integration for heading.

Keywords Multisensory integration · Self-motion · 

Maximum likelihood estimation · Optimal integration · 

Acceleration · Visual · Vestibular

Abstract Passive movement through an environment is 

typically perceived by integrating information from dif-

ferent sensory signals, including visual and vestibular 

information. A wealth of previous research in the field 

of multisensory integration has shown that if different 

sensory signals are spatially or temporally discrepant, 

they may not combine in a statistically optimal fashion; 

however, this has not been well explored for visual–ves-

tibular integration. Self-motion perception involves the 

integration of various movement parameters including 

displacement, velocity, acceleration and higher deriva-

tives such as jerk. It is often assumed that the vestibu-

lar system is optimized for the processing of acceleration 

and higher derivatives, while the visual system is special-

ized to process position and velocity. In order to deter-

mine the interactions between different spatiotemporal 

properties for self-motion perception, in Experiment 1, 
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Introduction

As a car travels down 5th Avenue in New York, it acceler-

ates and decelerates every 100 m in response to the traf-

fic signals, while avoiding vehicle and pedestrian traffic 

and staying within the lane. In order to achieve this suc-

cessfully, several movement parameters must be effectively 

perceived, including heading direction and velocity. These 

movement parameters are perceived using multiple sen-

sory systems, including the visual and vestibular systems. 

Previous research has shown that both heading (Warren 

and Hannon 1988; Royden et al. 1992, 1994; Butler et al. 

2010; Fetsch et al. 2010a) and relative ego-velocity (Gib-

son 1950; Frenz and Lappe 2005) can be perceived using 

visual information alone in the absence of physical cues 

to motion. In contrast, while there has been a great deal 

of research assessing the capacity to visually judge the 

accelerations of external objects (e.g., Brouwer et al. 2002; 

Schlack and Albright 2007; Schlack et al. 2007, 2008), 

far fewer studies have considered the capacity of humans 

to judge accelerations/decelerations in the context of self-

motion. Festl et al. (2012) have shown that humans can 

extract information from optic flow in order to discriminate 

motion profiles specifying different rates of acceleration. 

However, this study also concluded that absolute judgments 

of ego-accelerations are not possible without visual scaling 

of the scene provided through depth cues (and/or without 

the scaling provided through non-visual cues).

In terms of vestibular contributions to self-motion per-

ception, a collection of recent research by our group and 

others has shown that vestibular information alone can also 

be used to perceive heading in humans and non-human pri-

mates (Telford et al. 1995; Butler et al. 2006; de Winkel 

et al. 2010; Fetsch et al. 2010a; MacNeilage et al. 2010; 

Crane 2012; Nolan et al. 2012; Cuturi and MacNeilage 

2013). During translational motion, the main function 

of the vestibular system is as an acceleration detector. As 

the vestibular system responds to changes in acceleration, 

it cannot directly estimate velocity and therefore becomes 

uninformative during constant velocity motion (Benson 

et al. 1986).

Recent inquires have now begun to focus on how infor-

mation from the visual and vestibular systems are inte-

grated to perceive different aspects of self-motion. Because 

each of these sensory systems have different reliabilities 

for perceiving different movement parameters (i.e., vision 

more sensitive to changes in position and velocity and ves-

tibular more sensitive to detecting accelerations) and for 

different movement conditions (e.g., vision more sensitive 

for slow and vestibular more sensitive for fast ego-motion 

(Berthoz et al. 1975; Zacharias and Young 1981)), thus the 

optimal combination of the cues should take into account 

the reliability of the single cue percepts. Indeed, within the 

context of heading perception, behavioral and neurophysi-

ological studies have shown that when visual and vestibu-

lar cues are presented synchronously, they elicit a more 

reliable behavioral and neuronal response than either cue 

alone (Butler et al. 2010, 2011a; Fetsch et al. 2010a, 2012; 

Gu et al. 2011). These results have been embedded into 

the theoretical framework of maximum likelihood estima-

tion (MLE), such that predictions about the reliability and 

the weights of the unisensory cues can be used to make 

predictions in combined cue conditions (see Ernst and 

Banks 2002; Ernst and Bülthoff 2004). Neurophysiologi-

cal recordings in non-human primates have revealed head-

ing direction sensitive neurons in areas such as MT, medial 

superior temporal (MST) and ventral intraparietal (VIP). 

Models of this neurophysiological data have indicated that 

vestibular responses are driven mainly by velocity (VIP and 

MSTd) and acceleration (VIP) components, whereas visual 

responses were driven mainly by velocity (VIP) (Fetsch 

et al. 2010b; Chen et al. 2011).

Far fewer studies have attempted to quantify the rela-

tive contributions of visual and vestibular cues to the per-

ception of linear acceleration (Berger and Bülthoff 2009; 

Berger et al. 2010). Berger et al. (2010) asked observers 

to judge how “believable” a forward accelerating move-

ment was under different visual–vestibular conditions. 

Their results indicated that a simulated visual acceleration 

that coincided with a physical backward pitch was rated 

as most believable. However, the range of physical pitch 

movements that were rated as believable when combined 

with the same visual acceleration profile was quite broad. 

Further, the reasonably high tolerance for physical motions 

that differed from the visual motions did not seem to be 

affected by whether the observer was consciously aware 

of the discrepancy, indicating that this integration is likely 

quite robust.

There remains a gap in knowledge within this field of 

research regarding how different spatiotemporal charac-

teristics of a self-motion profile, including information 

about heading and velocity interact. Given that self-motion 

perception is not well represented by a discrete event, but 

takes place over space and time, it is likely that there is a 

continuous integration of information throughout a given 

trajectory. This integration may therefore be dependent 

on different dynamic spatiotemporal parameters and may 

be contingent on individual sensory cue reliabilities. For 

instance, it is not yet clear whether the precision of heading 

perception could be affected by the velocity profile of the 

motion trajectory. It is also not clear whether the process by 

which visual and vestibular cues are integrated is affected 

by whether the visual and vestibular motion profiles are 

different.

Therefore, in order to first evaluate whether the 

velocity profile of a motion trajectory affects heading 
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perception, Experiment 1 evaluated heading discrimi-

nation performance on a purely visual heading task for 

different velocity profile conditions. Specifically, head-

ing comparisons were made for either constant velocity 

motion profiles or raised cosine velocity profiles. If visual 

heading discrimination thresholds are purely based upon 

displacement, there should be no performance differences 

between the two visual motion conditions. As velocity 

is the first derivative of displacement, it is impossible 

to change one without changing the other. Therefore, in 

order to create discrepancies in velocities between the two 

motion profiles (visual and vestibular), while keeping dis-

placement equal (important to control for in the context of 

heading perception), average velocity was equated across 

profiles.”

In contrast, if higher derivatives (acceleration) do play 

a role in visual heading perception, this could lead to sev-

eral different predictions. First, given that a raised cosine 

velocity profile is the more natural and commonly expe-

rienced visual motion profile and is typically coincident 

with actual physical self-motion, it is possible that the dis-

crimination thresholds will in fact be lower in the raised 

cosine velocity trials compared to the constant velocity 

trials. Another reason why the raised cosine velocity tri-

als might result in a more reliable response is that par-

ticipants may not integrate information across the whole 

profile but rather over a shorter window of time than the 

one second trials which could result in a higher velocity 

and hence a more reliable heading percept (Crowell and 

Banks 1993).

However, when considering the visual alone condi-

tions, the vestibular cue is indicating no changes in veloc-

ity which could introduce an intersensory conflict. This 

conflict may be greater for the raised cosine visual motion 

profile given as there is a change in velocity which is in 

conflict with the vestibular cue which might result in a less 

reliable discrimination of heading.

Experiment 2 helped to further test the role of the visual 

motion profile on self-motion by assessing multisensory 

heading perception when visual and vestibular cues were 

combined. Specifically, this experiment evaluated whether 

visual and vestibular cues would be optimally combined, 

even when the motion profiles of each differ. Again, the 

same two visual motion profiles were included during 

multisensory conditions, leading to cue combinations that 

were either congruent (both raised cosine velocity profiles) 

or incongruent (constant velocity visual motion and raised 

cosine velocity vestibular motion). This also allowed us to 

evaluate whether visual and vestibular inputs continued to 

be optimally integrated during self-motion (as has already 

be shown several times previously using this paradigm) 

when the visual velocity profile and the physical/vestibular 

velocity profile are discrepant.

Methods

Participants

Fifteen participants (five males) completed Experiment 1, 

and six new participants (two males) completed Experi-

ment 2. The average age was 24 years (19–31). All partici-

pants had normal or corrected-to-normal vision, including 

normal stereo vision. Participants were compensated with 

pay of 8 Euros per hour and were naïve to the purposes of 

the experiment. Participants gave their informed consent 

before taking part in the experiment, which was performed 

in accordance with the ethical standards specified in the 

1964 Declaration of Helsinki.

Apparatus

Experiment 1

In Experiment 1, participants were seated 1.0 m in front 

of a large back-projected screen. The screen had a field of 

view of 102° × 82° with a resolution of 1,280 × 1,024 pix-

els and a refresh rate of 60 frames per second.

Experiment 2

The experimental setup and stimuli were identical to those 

described previously (Butler et al. 2010, 2011a). This 

experiment was conducted in the Motion Lab at the Max 

Planck Institute for Biological Cybernetics, which consists 

of a Maxcue 600, six degree of freedom, Stewart platform 

manufactured by Motion-Base PLC, UK (Fig. 1a).

To mask the noise of the platform, participants wore 

noise-cancellation headphones with two-way communica-

tion capability while white noise was played. To mask the 

vibrations of the platform motors, somatosensory vibra-

tions were produced by subwoofers installed under the seat 

and foot plate. A foam head rest was used to keep head 

movements to a minimum. The visuals were displayed on 

a projection screen with a field of view of 86° × 65° and 

a resolution of 1400 × 1050 pixels and a refresh rate of 

60 frames per second. Participants viewed the projection 

screen through an aperture, which reduced the field of view 

to 50° × 50°, thereby increasing immersion and avoiding 

conflicting information provided by the stability of the 

frame around the screen and the visual motion information 

being projected on the screen. In both experiments, partici-

pants freely viewed the stimulus.

Participants responded using a four-button response 

box. The stereoscopic image was generated using red–cyan 

anaglyphs. All experiments were coded using a graphical 

real-time interactive programming language (Virtools™, 

France).
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Stimuli

The visual stimulus in both Experiments 1 and 2 con-

sisted of a limited lifetime Gaussian starfield. Each star 

was a circle that had an average diameter of 0.15° which 

were Gaussian smoothed in contrast to minimize any sharp 

contrast changes and hence avoid aliasing and a lifetime 

in the range of 0.5–1.0 s. The maximum number of stars 

on the screen at one time was 200, and the minimum was 

150. Each dot subtended between 0.1° and 0.2°, which 

depended on their virtual distance ranging from 2 to 2.5 m. 

The starfield was presented in stereo on a gray background 

to facilitate the fusing of the red and cyan images.

Two motion profiles were used in this study, a raised 

cosine velocity profile (acceleration/decelerations at start/

end of motion) and a constant velocity profile (step func-

tion with a single impulse in acceleration at the start and of 

the motion). If visual heading discrimination thresholds are 

purely based upon displacement, there should be no perfor-

mance differences between the two visual motion condi-

tions. The raised cosine velocity profile was

This profile had a maximum displacement, velocity 

and acceleration of 0.078 m, 0.156 ms−1 and 0.49 ms−2, 

(1)sRaised(t) = 0.49
(2π t − sin(2π t))

4π2
, 0 ≤ t ≤ 1s.

respectively (Fig. 1b Left), which is above the detec-

tion threshold for blindfolded accelerations (Benson et al. 

1986).

The constant velocity profile, which was only employed 

in the visual condition, was

This profile has a maximum displacement and velocity 

of 0.078 m and 0.078 ms−1, respectively. The acceleration 

profile is 0.0 ms−2 except for an impulse at the very start 

and end of the profile (Fig. 1b Right).

General procedure

Participants performed a two-interval forced choice task 

(2-IFC) in which they were asked to judge “in which of 

the two intervals did you move more to the right” (see 

Fig. 2). Each trial consisted of two heading motions, the 

standard and the comparison (counterbalanced across tri-

als). The standard angle was always fixed at 0° (straight 

ahead), while the eight comparison angles were −20° −10° 

−5° −2°, 2° 5°, 10° and 20°. All trials were initiated with 

a beep to indicate that the participants could start the trial 

with a button press. After pressing the start button, there 

was a 0.75-s pause between the stimulus appearing on the 

screen and the onset of the motion. Between intervals, there 

(2)sconstant(t) = 0.078t, 0 ≤ t ≤ 1s.

Fig. 1  a Top view of the hexapod platform. Bottom view of the hexa-

pod platform, b displacement, velocity and acceleration of the motion 

profiles. Left, raised cosine velocity profile for the vestibular and vis-

ual conditions (red). Right, constant velocity profile which is only for 

the visual condition (blue)
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was a 1-s pause. Participants responded after the second 

interval. In the vestibular and visual–vestibular conditions 

in Experiment 2, after responding, the participants were 

passively moved back to the start position with no visual 

stimulus on the screen at a subthreshold vestibular velocity 

of 0.025 ms−1, for about 5 s prior to commencing the next 

trial.

Experiment 1

Participants completed a visual alone heading task. The 

heading task was blocked with respect to the different 

motion profiles, a constant velocity profile (C-Vis) and a 

raised cosine velocity profile (R-Vis), which were coun-

terbalanced across participants. For each condition, there 

were 30 repetitions of each of the eight comparison angles 

(240 trials total). These trials were divided into three blocks 

with each block lasting approximately 7 min. In total with 

breaks, the experiment lasted 1 h.

Experiment 2

Six naïve participants completed six blocks of visual alone 

trials (3 C-Vis, 3 R-Vis), three blocks of vestibular alone 

trials and six blocks of visual–vestibular trials (3 C-Vis/

Vest, 3 R-Vis/Vest). Therefore, in the combined cue trials 

(visual–vestibular), half were congruent (R-Vis/R-Vest), 

and half were incongruent (C-Vis/R-Vest) (see Fig. 2). 

Each block consisted of eight comparison angles repeated 

ten times (240 trials per condition). The experiment was 

run over five one and a half hour experimental sessions.

Data analysis

Individual participant’s data for each condition were fit 

with a Gaussian psychometric function using the psignifit 

toolbox (Wichmann and Hill 2001a, b). From the calculated 

fit, the just noticeable differences (JNDs) were determined, 

which is proportional to the standard deviation of the dis-

tribution. The JND value is inversely related to reliability, 

and thus, the higher the JND, the higher the discrimination 

threshold and the lower the reliability. For all analyses, the 

significance level was set at 0.05.

Results

Experiment 1

Figure 3a shows data from a representative partici-

pant for the visual alone raised cosine velocity condi-

tion (red) and visual alone constant velocity condition 

(blue) and cumulative Gaussian fits. The average visual 

alone heading thresholds for the R-Vis and C-Vis were 

Fig. 2  Top-down schematic of 

a 2-IFC combined incongruent 

trial, in which the motion profile 

for the visual cue is a constant 

velocity (blue) and the vestibu-

lar cue is a raised cosine (red)
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JNDR-Vis = 4.20° ± 0.37° and JNDC-Vis = 5.43° ± 0.55°, 

respectively (Fig. 3b). The results of a paired two-tailed  

t test revealed that the JNDs for the R-Vis condition were 

significantly lower than the C-Vis condition (t15 = −3.298; 

p < 0.005). These results indicate that the type of motion 

profile affects the discrimination of heading. Furthermore, 

the more natural yet complex visual motion profile (R-Vis) 

yielded the most reliable responses.

Experiment 2

Based on MLE models and supported by past studies, a 

combination of congruent visual and vestibular inputs 

should result in a reduction of variance compared to unisen-

sory conditions (Fetsch et al. 2009, 2010a; Butler et al. 

2010, 2011a). What is unknown is whether optimal integra-

tion will occur if there is conflicting information provided 

by the visual and vestibular inputs in the form of different 

velocity profiles and how these results compare to visual 

only conditions. If the combined visual and vestibular cues 

are integrated irrespective of whether the motion profiles 

are congruent or incongruent, the unimodal JNDs, JNDVis, 

JNDVest, can be used to predict the optimal JNDPred of the 

visual–vestibular condition (Ernst and Bülthoff 2004).

If the cues are not optimally combined, as has been the 

case in some previous studies under certain conditions (de 

Winkel et al. 2010; Butler et al. 2011a), then the JND in the 

(3)JND
2

Pred Vis−Vest
=

1

1/JND
2

Vis
+ 1/JND

2

Vest

=
JND

2

Vis
JND

2

Vest

JND
2

Vis
+ JND

2

Vest

combined conditions would be no less than the JND of the 

most reliable unimodal cue.

The 95 % confidence intervals were calculated for each 

participant’s JND by a bootstrap procedure with 1999 rep-

etitions (for details see Wichmann and Hill 2001b). The 

predicted multisensory 95 % confidence intervals ∆Pred 

were calculated by the propagation of error formula (Taylor 

1997)

from the first derivatives of the predicted visual–vestibular 

JNDPred and the visual ∆Vis and vestibular ∆Vest confidence 

intervals.

Unimodal conditions

The average visual alone heading JNDs for the R-Vis and  

C-Vis were JNDR-Vis = 5.5◦
± 0.54◦, JNDC-Vis = 7.3◦

±

0.83
◦, thereby replicating the results of Experiment 1 with a 

different group of participants. This also demonstrates that 

even though there were differences in the visual displays 

in Experiments 1 and 2, including different FOVs and an 

aperture, the result that the velocity profile had an impact 

on the reliability of the visual alone heading response was 

unchanged. For vestibular alone heading, the JNDVest was 

5.6° ± 0.76° (Fig. 4a). An ANOVA was performed on the 

heading discrimination performance (JND) for the R-Vis 

(4)JNDVis−Vest ≥ min(JNDVis, JNDVest)

(5)∆Pred =

∣

∣

∣

∣
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Fig. 3  Experiment 1 results. a Data for raised cosine visual alone 

(red), constant visual alone (blue) and for a representative partici-
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alone, C-Vis alone and Vest alone for all participants. The 

analysis revealed a significant main effect of condition 

(F(2, 10) = 9.086, MSE = 0.646, p < 0.01). Three two-

tailed paired-sample t tests were conducted to compare the 

unimodal conditions, R-Vis vs. C-Vis, R-Vis vs. Vest and 

C-Vis vs. Vest. As in Experiment 1, the R-Vis and C-Vis 

alone were significantly different (t5 = −3.552, p < 0.016). 

The C-Vis condition was significantly different from the 

Vest alone condition (C-Vis: t5 = −3.22, p < 0.025), but the 

R-Vis was not significantly different from the Vest alone 

condition (p = 0.993).

Bimodal conditions

The observed and predicted average JNDs for the bimodal  

congruent motion profiles were JNDObs_R-Vis/R-Vest =

4.15◦
± 0.35◦, and JNDPred_R-Vis/R-Vest = 3.88◦

± 0.31◦,  

respectively. The observed and predicted average 

JNDs for the bimodal incongruent motion profile were 

JNDObs_C-Vis/R-Vest = 4.03◦
± 0.29◦, JNDPred_C-Vis/R-Vest

= 4.37
◦
± 0.35

◦ (Fig. 4b), respectively.

To compare the multisensory conditions with the visual 

conditions and the role of motion profile, the data were sub-

mitted to a 2 sensory condition (Vis alone vs. Vis–Vest) × 2 

motion profile (C-Vis vs. R-Vis) repeated measures 

ANOVA. The analysis showed a significant effect of sen-

sory condition (F(1,5) = 18.115, MSE = 1.779, p < 0.01), 

but no significant effect of motion profile (F(1,5) = 3.768, 

MSE = 0.710, p = 0.069) and a significant interaction 

effect (F(1,5) = 5.105, MSE = 0.567, p = 0.03). The sig-

nificant interaction is driven by the statistical difference 

between the profiles in the visual conditions (see above) but 

not for the combined condition (Post hoc t test: C-Vis–Vest 

vs. R-Vis–Vest: t5 = 0.296, p = 0.776).

Follow-up paired-sample t tests to investigate the effect 

of sensory condition revealed a lower JND in the Vis–

Vest condition than the Visual Alone for both the raised 

cosine and constant velocity profile (R-Vis vs. R-Vis–Vest: 

t5 = 3.917, p < 0.015 and C-Vis vs. C-Vis–Vest: t5 = 4.463, 

p < 0.01). To compare the multisensory conditions with 

the vestibular alone condition, the vestibular JND was sub-

mitted to a paired t tests with the raised Vis–Vest JND and 

the constant Vis–Vest JND which revealed a lower JND in 

the Vis–Vest conditions (Vest vs. R-Vis–Vest: t5 = 3.808, 

p < 0.015 and Vest vs. C-Vis–Vest: t5 = 3.34, p < 0.025). 

This shows that there was increased reliability of the head-

ing response in the visual–vestibular condition for both the 

congruent and incongruent conditions.

In order to compare the observed results with model 

predictions (based on MLE optimal integration), a 2 

(observed vs. predicted) × 2 motion profile (C-Vis vs. 

R-Vis) repeated measures ANOVA was performed. The 

analysis revealed that observed and predicted JNDs were 

not significantly different (F(1,5) = 0.494, MSE = 0.022, 

p = 0.89), nor was there a main effect of motion profile 

(F(1,5) = 0.0556, MSE = 0.346, p = 0.49) or an interac-

tion effect (F(1,5) = 2.085, MSE = 0.275, p = 0.21). The 

results show that for both the congruent condition (R-Vis/

R-Vest) and the incongruent condition (C-Vis/R-Vest), an 
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optimal reduction in variance was observed that was in line 

with MLE model predictions (Fig. 5).

Discussion

The results of both Experiment 1 and 2 demonstrate that 

visual velocity motion profiles can affect visual heading 

discrimination. The most typical and natural form of visual 

motion that occurs when changing from a stationary to a 

moving position includes an initial acceleration component 

followed by a deceleration component prior to the final 

resting state. Indeed, the current results show that it is this 

type of profile that resulted in the least variable visual head-

ing estimates. In contrast, when the visual motion started 

suddenly (constant velocity), which is an event that does 

not typically occur during real world interactions, higher 

thresholds were observed. This suggests that despite the 

fact that the instructed task at hand (heading perception) 

was mainly contingent on detecting changes in direction, 

other spatial–temporal features of the motion profile (i.e., 

velocity/acceleration in this case) affected the sensitivity 

of responding. It is not entirely clear based on these initial 

findings what the nature of this relationship is. It is possi-

ble, for instance, that having a natural acceleration compo-

nent to the visual motion helps to disambiguate self-motion 

from object motion (Festl et al. 2012). It is also possible 

that having an acceleration component to the visual motion 

generates a more compelling sense of “vection” or illusory 

self-motion, which could improve measures of self-motion 

perception. Indeed, there are many examples demonstrat-

ing that ratings of vection are higher when acceleration 

components are added to a purely visual motion stimulus 

(e.g., viewpoint jitter) compared to when constant veloc-

ity visual motion is presented (Palmisano et al. 2000, 2003, 

2007, 2008, 2011). Notably, vection onsets typically occur 

after longer periods of constant velocity than was afforded 

by the stimulus duration used here. This is presumably 

because illusory visual motion becomes most compelling 

once the conflicting expectation of the vestibular onset 

cue to motion (i.e., the acceleration component) subsides 

(Palmisano et al. 2008). However, the current results dem-

onstrate that even within the 1-s stimulus presented here, 

significant differences in the sensitivity to visual accelera-

tion profiles are clearly observed.

It should also be noted that the depth scaling information 

provided by the starfield stimuli that was used in the current 

study was only provided through stereo cues, and therefore, 

estimates of absolute velocity/acceleration were not possi-

ble (relative comparisons only). It is conceivable that hav-

ing additional scaling information from richer depth cues 

may also impact the extent to which visual velocity profiles 

affect heading discrimination.

The second main finding of this study was that when 

the different visual velocity motion profiles were presented 

simultaneously with vestibular inputs, optimal cue integra-

tion was observed irrespective of whether the cues were 

congruent (R-Vis and R-Vest) or incongruent (C-Vis and 

R-Vest). This suggests that the integration of visual and 

vestibular cues is quite robust and tolerant of spatiotempo-

ral conflicts. In the context of multisensory integration for 

other sensory combinations (e.g., visual-tactile, visual audi-

tory), a wealth of evidence has shown that optimal integra-

tion is affected by cue coincidence in space and/or time 

(Hartcher-O’Brien et al. 2014). That is, when information 

from two sensory systems occur at locations that are too far 

apart or occur at moments that are too far separated in time, 

these inputs are not perceived as being associated with one 

event and thus optimal integration fails. Specifically, this 

can lead to the reliability of the responses under multi-

sensory conditions being equal to or worse than either of 

the unisensory conditions (Wallace et al. 2004; Gepshtein 

et al. 2005; Roach et al. 2006; Kording et al. 2007; Bent-

velzen et al. 2009; Wozny et al. 2010; Wozny and Shams 

2011). It is worth noting that in our study while the tempo-

ral/velocity profiles were incongruent, other characteristics 

of the stimuli were consistent (e.g., the onset of the stimuli 

and the heading information which were always congru-

ent across motion profiles). This could explain why par-

ticipants combined the visual and vestibular inputs in this 

case, which is unlike other examples showing a breakdown 

of optimal integration in the face of intersensory conflicts. 
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However, there are other recent examples that also dem-

onstrate robust cue integration under conflicting sensory 

conditions. Raposo et al. (2012) and Sheppard et al. (2013) 

showed that both humans and rats combine audio and visual 

information over time in an optimal fashion even when the 

stimuli were not presented synchronously, thus illustrating 

that the time course of stimuli do not have to align in time 

for optimal integration. This result agrees with our findings 

such that even when the visual and vestibular motion pro-

files are incongruent, participants combine the information 

in an optimal fashion. In a recent paper, Drugowitsch et al. 

(2014) have proposed a model of visual–vestibular integra-

tion using a novel diffusion model in which visual veloc-

ity information and vestibular acceleration information is 

accumulated over time to make a decision. This model does 

not require that the stimuli are synchronous but that the 

information for the decision is combined and accumulated 

over time.

The optimal integration of incongruent visual and ves-

tibular motion profiles could be explained in relation to the 

brain acting as a moving average (low pass) filter of the 

sensory signals (Werkhoven et al. 1992). Thus, while the 

motion profiles are inconsistent at the start and the end of 

the movement, the period around the peak velocity could 

be perceived as similar and hence integrated. Furthermore, 

this could account for the more reliable visual alone head-

ing responses in the raised cosine velocity profile condi-

tion. While over the one second movement, the displace-

ment and the average velocity are identical for both motion 

profiles if the heading discrimination judgment is made 

over a smaller window of time centered around the maxi-

mum velocity than the raised cosine velocity profile would 

have a larger displacement and average velocity than the 

constant velocity profile and as higher velocities can result 

in a more accurate discrimination of heading (Crowell and 

Banks 1996).

Currently, very little is known about the tolerance of 

visual–vestibular integration to spatial or temporal con-

flicts. There is evidence that visual–vestibular integration 

remains optimal under spatial discrepancies (Butler et al. 

2010; Fetsch et al. 2010b) and that the believability of for-

ward accelerations is maintained under a range of physical 

pitch angles (MacNeilage et al. 2007; Berger et al. 2010). 

Ash and Palmisano (2012) have also demonstrated that 

vection is enhanced when visual and vestibular inputs are 

combined during oscillating head movements, even if the 

physical oscillations are not spatially congruent with the 

visual oscillations. In general, however, the range of motion 

parameters under which visual–vestibular conflicts lead to 

non-optimal integration is unknown. One possible limita-

tion of this study is that we cannot speak to the relative 

weights of the visual and vestibular cues. Ideally, future 

research will sample from a wider and more comprehensive 

range of spatial and temporal offsets, but it should be noted 

that in our previous work, there was a bias toward the ves-

tibular cue which was not accounted for the by reliability 

of the cue which will have to be taken into consideration 

(Butler et al. 2010).

There is, however, reason to believe that the optimal 

integration of visual and vestibular inputs may be particu-

larly resistant to cue conflicts, because unlike other cue 

combinations, these two cues maintain a very tight, causal 

relationship (MacNeilage et al. 2007; Frissen et al. 2011; 

Campos et al. 2012; Prsa et al. 2012). (Prsa et al. 2012) 

recently argued that mandatory fusion between visual and 

vestibular cues is observed during ego-rotations. Specifi-

cally, they argue that unisensory estimates of rotations from 

visual and vestibular inputs are not retained once integra-

tion has occurred. While mandatory fusion has been dem-

onstrated for intramodal cue integration (e.g., visual cue 

integration—see Hillis et al. 2002), this is the first reported 

demonstration in the context of cross-modal integration. 

Future experiments would test the limit of the combination 

of the cues by including larger incongruencies between the 

visual and vestibular motion profiles. A caveat to the man-

datory fusion argument is that multisensory integration can 

be stimulus and task specific; for example, auditory and 

tactile cues exhibit multisensory integration for frequency 

discrimination (Yau et al. 2009; Butler et al. 2012) but not 

for duration or intensity discrimination (Yau et al. 2010; 

Butler et al. 2011b). This could also be the case for visual–

vestibular integration that for a different task mandatory 

integration might breakdown.

There are several applied implications for these find-

ings in the context of both fixed-based and motion-based 

simulation (Teufel et al. 2007; Bles and Groen 2009; Bar-

nett-Cowan et al. 2012). For instance, it is not uncommon 

for purely visually based simulations (i.e., fixed-base) to 

refrain from using visual accelerations in an attempt to 

avoid the experiences of motion sickness that can be caused 

by sensory conflicts (Wallis et al. 2002). However, the use 

of such motion profiles could have more global effects on 

perception and performance across a variety of parameters 

(i.e., velocity and heading perception). In the context of 

motion-based simulators, it is typically the case that the 

range of movements being simulated extends beyond the 

motion capabilities of the platform, and therefore, motion 

cueing algorithms must be used to create the illusion of 

extended motion (Grant and Reid 1997). One of the key 

necessities of these algorithms is to ensure an acceptable 

congruency between visual and physical motion cues. The 

results of the current study suggest that the inclusion of 

physical motion leads to more precise estimates of self-

motion and that this precision persists even when conflicts 

are present between visual and physical inputs. Under-

standing the range of tolerable conflicts will help to better 
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define motion cueing algorithms in future and maximize 

the capabilities of such simulations.

Conclusion

The study demonstrates that, while visual velocity profiles 

can affect the sensitivity of visual heading discrimination, a 

conflict between visual and vestibular velocity profiles does 

not cause a breakdown in optimal integration for heading. 

This suggests that optimal visual–vestibular integration 

is robust in the face of some spatiotemporal conflicts and 

future work will help to define the extent to which these 

types of conflicts are tolerated before integration breaks 

down.
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