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Atypical visual and somatosensory adaptation in
schizophrenia-spectrum disorders
GN Andrade1,2, JS Butler1,3,4, GA Peters1, S Molholm1,2 and JJ Foxe1,2,4,5,6

Neurophysiological investigations in patients with schizophrenia consistently show early sensory processing deficits in the visual
system. Importantly, comparable sensory deficits have also been established in healthy first-degree biological relatives of patients
with schizophrenia and in first-episode drug-naive patients. The clear implication is that these measures are endophenotypic,
related to the underlying genetic liability for schizophrenia. However, there is significant overlap between patient response
distributions and those of healthy individuals without affected first-degree relatives. Here we sought to develop more sensitive
measures of sensory dysfunction in this population, with an eye to establishing endophenotypic markers with better predictive
capabilities. We used a sensory adaptation paradigm in which electrophysiological responses to basic visual and somatosensory
stimuli presented at different rates (ranging from 250 to 2550 ms interstimulus intervals, in blocked presentations) were compared.
Our main hypothesis was that adaptation would be substantially diminished in schizophrenia, and that this would be especially
prevalent in the visual system. High-density event-related potential recordings showed amplitude reductions in sensory adaptation
in patients with schizophrenia (N= 15 Experiment 1, N= 12 Experiment 2) compared with age-matched healthy controls (N= 15
Experiment 1, N= 12 Experiment 2), and this was seen for both sensory modalities. At the individual participant level, reduced
adaptation was more robust for visual compared with somatosensory stimulation. These results point to significant impairments in
short-term sensory plasticity across sensory modalities in schizophrenia. These simple-to-execute measures may prove valuable as
candidate endophenotypes and will bear follow-up in future work.
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INTRODUCTION
Visual processing deficits are widely reported in schizophrenia and
hypothesized to have a role in higher-order cognitive and
emotional processing deficits.1–7 Research techniques targeting
early sensory processing are particularly useful in clinical popula-
tions, since they are largely independent of behavioral perfor-
mance, motivation and attentional state. Studies consistently
report decreased amplitudes of early visual evoked potentials
(VEP) in schizophrenia-spectrum disorders, particularly of the
so-called P1 component occurring 80–120 ms post stimulus.3,8–13

Although effect sizes are often large in these studies, there is
nonetheless substantial overlap in the distributions of amplitudes
across patients and controls, limiting clinical applicability of these
measures. An obvious research prerogative, therefore, is to
establish more sensitive measures of visual sensory dysfunction
in schizophrenia to provide greater classification sensitivity.
Accordingly, we set out to exploit second-order ‘dynamic’ visual
processing effects in the form of adaptation of the neural
response to repeated stimulations.
The adaptation of neural responses to invariant or repetitive

environmental inputs is a fundamental property of sensory
processing, and is thought to represent a mechanism by which
sensory systems attenuate representational redundancy.14–16 The
adaptation studies are abundant in the auditory domain, whereas

they are comparatively sparse for the visual sensory modality.
Most adaptation studies in the auditory domain use the so-called
‘gating’ paradigm, in which robust attenuation in the auditory
evoked potential is noted when examining the neural response to
the second stimulus in pair as compared with the first (paired
presentations17,18). Attenuation of the auditory response can also
be elicited by so-called ‘habituation’ paradigms, in which the
auditory evoked potential attenuation is compared across a block
of several stimuli.19,20 A main finding in both auditory habituation
and gating studies is that the shorter the period between stimulus
presentations, the greater is the attenuation observed.12,21–24

In the visual adaptation literature, the data are much less clear-
cut. Just considering paired-presentation (gating) paradigms,
findings are widely varied, encompassing everything from strong
visual adaptation to monocular stimulation,25 to weakened
adaptation to binocularly presented stimuli as compared with
other sensory modalities,26 to adaptation effects that are specific
to right lateral occipital scalp sites,27 or no adaptation at all.28 It is
also interesting to note that the term gating has been applied to
paradigms in which non-identical, spatially segregated stimuli are
used,29 further confusing interpretation of the literature. The effect
of presentation rate on adaptation in the visual system has not
been widely investigated but consistent with the auditory
literature, one study, using blocks of 10 stimuli, reported
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significantly more gating under ‘fast’ as compared with the ‘slow’
presentation rates.30

Given no clear reliable or independent mechanistic grounding
underlying different approaches to studying neural adaptation,
the lack of consistency in visual ‘gating’ effects, and that there are
not many studies using a blocked approach, our group directly
compared paired and block visual adaptation paradigms in
healthy controls.31 Using the exact same stimuli and interstimulus
intervals (ISIs), we showed that a blocked paradigm was much
more effective than a paired paradigm in driving adaptation, with
the data indicating that the visual system required repeated
driving of sensory cortex for strong attenuation of the VEP to be
observed. This contrasts with auditory processing where single
repetitions (paired stimulations) are sufficient to observe short-
term sensory plasticity. To avoid propagating the use of
inconsistent terminology, we refer to this process as adaptation
of the visual response; a label that gets away from the paradigm
used to elicit the effect and that may be more representative of
underlying mechanisms. In our previous study,31 we were able to
show that visual adaptation could be observed at the individual
participant level, potentially offering a more sensitive measure by
which visual processing deficits can be used to characterize those
diagnosed with schizophrenia. Here we advance this work by
testing the sensitivity of this metric to visual impairment in
individuals with schizophrenia.
There is good reason to predict that adaptation to repetitive

visual stimuli might be impaired in schizophrenia as patients exhibit
other forms of short-term visual plasticity deficits, such as atypical
contrast gain control32,33 and motion processing;34–36 as well as the
rich literature showing altered adaptation to repetitive auditory
stimuli in this population.28,37–39 This hypothesized reduction in
representational redundancy likely serves to enhance the brain's
ability to detect more relevant novel environmental changes or
novel stimuli. These related processes in which an enhancement of
the sensory response to novel or changing stimuli in otherwise
uniform sensory environments is expected, indexed for instance by
auditory mismatch negativity responses, have also been shown to
be impaired in patients with schizophrenia.40–44

In addition, the need for a deeper characterization of visual
processing in schizophrenia-spectrum disorders has been high-
lighted by the ‘Cognitive Neuroscience Treatment Research to
Improve Cognition in Schizophrenia (CNTRICS)’ consortium45 as a
domain offering particular promise in novel treatment
development.46–48 One way that uncovering visual adaptation
deficits may offer hope in this domain is by shedding light on the
underlying neurobiology of schizophrenia. For instance, as the
visual system is known to be heavily dependent on NMDAR (N-
methyl-D-aspartate receptor)-mediated activity49–52 and NMDAR
activity is thought to be dysfunctional in schizophrenia,53–55 a
visual adaptation assay could serve as a proximal, non-invasive
read-out informing NMDAR function or change. Further proposed
plasticity mechanisms thought to be involved in this and other

forms of sensory gating have also been implicated in the
pathophysiology of schizophrenia, including both bottom-up
and top-down effects relying again on NMDA-mediated glutamate
transmission, as well as GABA-ergic inhibition and changes in the
ongoing oscillatory activity of the brain (for example, in the
gamma band frequency).5,56–65

Last, as the study of somatosensory adaptation in schizophrenia
(SCZ) is largely uncharted territory and has also produced
inconsistent findings,66–70 the current investigation also includes a
somatosensory analog of our visual paradigm, with an eye to
assessing the potential sensory-specificity of short-term plasticity
mechanisms. Three studies that we are aware of have paved the
way in studying short-term somatosensory adaptation: a 2008
magnetoencephalography study66 showing altered secondary
somatosensory gating to paired stimuli in schizophrenia; a 2006
electroencephalographic study70 showing no somatosensory gating
deficits in SCZ, and 2010 magnetoencephalography study68

showing altered somatosensory plasticity in a mismatch negativity
response task in schizophrenia. For the most part, the more recent
work on somatosensation in schizophrenia has focused on graphe-
sthesia and two-point discrimination thresholds.71–76 Although
some of these studies have even suggested an endophenotypic
role for somatosensory deficits, with for instance, reduced sensitivity
in two-point discrimination in both patients and first-degree
relatives,73 characterization of the basic neurophysiology underlying
these phenomena is sparse and warrants further investigation.

MATERIALS AND METHODS
Participants
Fifteen adults with a schizophrenia-spectrum disorder (SCZ, four female)
and 15 neurotypical adults (NT, five female) completed the visual
adaptation experiment. Twelve of the 15 NT and 12 of the 15 SCZ also
completed the somatosensory adaptation experiment. All the SCZ
participants met DSM-IV criteria for schizophrenia or schizoaffective
disorder, using the Structured Clinical Interview for DSM-IV Disorders-
Research Version (SCID-R). NT participants had no self-reported history of
Axis I or Axis II disorders; Axis I disorders were ruled-out using the
Structured Clinical Interview for DSM-IV Disorders-Research Version-NP.
Thirteen participants in the SCZ group were receiving antipsychotic
treatment (see Table 1). The SCZ group was interviewed using the Positive
and Negative Syndrome Scale (PANSS) to quantify current symptom
severity. All the interviews were conducted by a certified rater with
established research reliability in the administration of these scales. All the
participants had normal or corrected vision. All the participants signed
informed consent. All the procedures were approved by the Albert Einstein
College of Medicine institutional review board and conformed to the
tenets of the Declaration of Helsinki. The participants received modest
compensation for their participation ($12 per hour).

Experiment 1. Visual adaptation
Stimuli. Stimuli were 100% contrast black and white checkerboard annuli
(6.5 cm diameter, 1 cm width, 4o × 4o, white luminance of 120 cd m− 2,

Table 1. Participant characteristics

Group Age Gender Medication PANSS positive scale PANSS negative scale PANSS general scale

SCZ
(N= 15)

37 (13) 11 M, 4 F 3 Typical
3 Atypical
7 Atypical+mood
2 None

Mean= 19.3, s.d.= 6.6,
Range: 8–30

Mean= 17.3, s.d.= 5.8,
Range: 9–25

Mean= 35.7, s.d.= 7.9,
Range: 21–49

NT
(N= 15)

31 (7) 10 M, 5 F None

Abbreviations: NT, neurotypical adult; PANSS, Positive and Negative Syndrome Scale; SCZ, schizophrenia. The ages are not significantly different; typical/
atypical refer to first- and second-generation antipsychotics, respectively; mood refers to antidepressant or mood stabilizer.
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black luminance of 0.2 cd m− 2) centered against a gray (luminance=
25 cd m− 2) background. A fixation cross was always centrally present,
including during checkerboard presentation. The cross changed color
approximately every 20–40 s, going from red to green for 33 ms and then
back to red again. Checkerboards were presented for 33 ms and at
different ISIs. Figure 1 displays a schematic representation of the
experiment and time course of stimulation.

Procedure. The participants sat in a darkened sound-attenuated elec-
trically shielded booth (Industrial Acoustics Company, Bronx, NY, USA),
90 cm from a 34× 55 cm LCD screen (ViewSonic VP2655wb, 60 Hz refresh).
They were instructed to minimize head movements and blinking while
fixating on a red cross at the center of the screen. They performed a
change detection task to ensure fixation by responding to cross color
changes with a button press. The presentation of checkerboards was
temporally unrelated to the fixation task.

Paradigm. The checkerboards were presented in blocks of 100. Within
block, stimuli were centered at an ISI, around which presentations were
jittered ± 50 ms. Five ISIs were used: 200, 300, 550, 1050 and 2550 ms.
Between-block intervals were self-paced; participants initiated the next
block by pressing a button 2500–5000 ms after the last stimulus of the
preceding block. Block presentation was pseudorandom. In total, the
participants experienced four blocks of each of the four shorter ISIs (200,
300, 550, 1050 ms) and two blocks of the longest ISI (2550 ms).31 The total
run time ranged from 35 to 45 min.

Experiment 2. Somatosensory adaptation
Stimuli. Tactile mechanical stimuli were generated using a custom-built
vibrotactile stimulator (Figure 1). The device was worn as a bracelet on the
right wrist (see Figure 1), with the stimulator placed over the median
nerve.77,78 The device uses a small (4 × 8 mm, 1.1 g) powerful (1.2 G-force,
200 Hz) vibration motor powered by a custom-built 1.5 V amplifier. The
stimulus duration was 50 ms, and controlled using Neurobehavioral
Systems Presentation Software.

Procedure. The participants were seated in a sound-attenuated electri-
cally shielded double-walled booth while a movie of their choice was
played on a Dell Latitude E640, at 80 cm viewing distance, with volume
adjusted to each participant’s personal preference level.

Paradigm. The stimuli were presented in blocks of 400. Within the blocks,
stimuli were presented at constant ISIs of 150, 200, 300, 550, 1050 or
2550 ms. The ISI block presentation was pseudo-randomized. The
participants were exposed to two blocks each of the faster ISIs (150, 200,
300) and one block of the slower ISIs (550, 1050, 2550).

Data acquisition (Experiments 1 and 2). Continuous electroencephalo-
graphic data were recorded using a Biosemi ActiveTwo 168 electrode
array, analog-to-digital converter and fiberoptic pass-through to a
dedicated acquisition computer (digitized at 512 Hz; DC-to-150 Hz pass-
band). The data were subsequently low-pass filtered at 45 Hz (fourth-order
zero-phase Butterworth filter, 27 dB per octave) and high-pass filtered at
1 Hz (fourth-order zero-phase Butterworth filter, 24 dB per octave). Epochs
of 600 ms with 100 ms pre-stimulus baseline were extracted to produce
both the VEP and the somatosensory evoked potential (SEP). An automatic
artifact rejection criterion of ± 75 μV was applied across all the electrodes.
Trials with more than eight artifact channels were rejected. In trials with
less than eight such channels, bad channels were interpolated using the
nearest neighbor spline.79,80 The data were re-referenced to the average of
all channels and re-baselined from − 100 to 0 ms. For Experiment 1, the
adjacent response algorithm was implemented on subject-level data to
model and remove response overlap in the fastest ISI condition (150–
250 ms).81,82

Analysis strategy
Group-level analysis. The analyses were performed using custom MATLAB
scripts (Mathworks, Natick, MA, USA), Fieldtrip toolbox for
electroencephalography,83 EEGLAB84 and SPSS (version 20, IBM, Armonk,
NY, USA). For both the experiments, the scalp sites and time periods of
interest were selected on the basis of maximal activation in the group

Figure 1. Experimental paradigms. ISI, interstimulus interval.
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waveforms and the methods described in the literature.31,66,77,85 In brief,
group-averaged waveforms were visually inspected across all the scalp sites.
This allowed for definition of the precise timing of a given component and
delineation of the scalp sites at which each component was of maximal
amplitude. For Experiment 1, we restricted analyses to three occipital sites
over midline and lateral scalp (Figure 2a) averaged over four time periods of
interest: 100–120 ms and 190–210 ms for the midline occipital site, and 145–
165 ms and 235–255 ms for the lateral occipital sites. A mixed 2×5
repeated-measures analysis of variance (ANOVA), with group as indepen-
dent factor (SCZ and NT) and ISI as repeated measures (five ISIs), was
performed for each scalp site of interest at the appropriate time periods. For
Experiment 2, the electrode clusters over midline frontal and left centro-
parietal scalp were identified as regions of interest and analyses were
performed at a single time period (45–75 ms) surrounding the major
prominent SEP peak (Figure 4a). A 2×6 mixed repeated-measures ANOVA,
with group as the independent factor (SCZ and NT) and ISI as repeated
measures (six ISIs) was performed for each region of interest. To provide a
more complete picture of the topographic distribution of effects in visual
and somatosensory adaptation experiments, scalp potential maps were also
generated for time periods of interest.

Individual-level analysis. To investigate robustness of adaptation at
individual participant level, a non-parametric randomization procedure
was conducted.86 For each participant, amplitudes recorded under the
2550 ISI condition were compared against each of the other ISI conditions
at the scalp sites of interest for the time periods during which adaptation
effects differed between groups (for example, significant group× ISI effect
in group analysis). The observed difference between the 2550 ms ISI and
the test ISI was compared with a reference distribution of differences
derived by iteratively randomizing between the two original data sets
10 000 times (that is, individual-subject VEP and SEP amplitudes for the
2550 ms and test ISI). The number of epochs selected for bootstrapping
was a subset of the total, which increased in steps of 20 from 30 epochs
until statistical significance or the maximum number of sweeps was
reached.87 A one-tailed threshold of Po0.05 defined significance. The
P-value for a randomization test was calculated from the proportion of
values in the reference difference distribution that exceeded the observed
difference.88 Last, chi-square analysis assessed whether the proportion of
participants exhibiting individual-level effects differed between groups.

RESULTS
Experiment 1
Group-level visual evoked potential analysis. Figure 2a depicts
group VEPs for sites of interest for NT (top) and SCZ groups
(bottom). Over midline, the first major deflection for both groups
was negative-going and peaked at ~ 110 ms, followed by a second
positive going deflection peaking at ~ 210 ms. Over lateral sites,
the first major negative deflection for both groups peaked at
~ 150 ms, followed by a positive deflection at ~ 250 ms. Results
from the main ANOVA and post hoc comparisons for significant
group × ISI interactions are presented in Tables 2A and 2B,
respectively and summarized below. Figure 2b depicts VEP tuning
curves for the time periods during which significant differences in
adaptation were noted. As can be seen in the plots, the SCZ group
exhibited less ISI-induced modulation, reflected by a more shallow
adaptation curve (red), particularly at lateral occipital sites. There
was no significant relationship between VEPs and PANSS scores.

Midline occipital site
First peak, 100–120 ms: There was a significant main effect of
group at ~ 110 ms over midline occipital scalp, F(1,28) = 7.4,
P= 0.01, partial η2 = 0.21. Follow-up planned t-tests showed
significantly reduced VEP amplitudes at all ISIs for the SCZ group
relative to NTs (mean group differences ranging from 2.5 to 3.6 μV,
all P-values o0.04). There was no significant effect of ISI or
group × ISI interaction at this time period.
Second peak, 190–210 ms: A significant ISI by group interaction

was observed at ~ 200 ms over midline occipital scalp, F
(4,113) = 5.1, P= 0.006, partial η2 = 0.15, indicating that adaptation
differed between the groups. To characterize the dynamics of

adaptation for the SCZ and NT groups, follow-up within-group
ANOVAs and paired t-tests were conducted (see Table 2B). These
revealed a significant main effect of ISI for each group. At this later
time period, the adaptation effect was ‘reversed’, with faster ISIs
eliciting greater VEP amplitudes, a pattern we previously
observed.31 Follow-up planned comparisons showed within-
group differences in VEP modulation. In the NT group, there were
significant differences: (1) when comparing the two slowest ISIs
against all other ISIs, and (2) when comparing between the two
slowest ISIs, all P-values o0.005. In the SCZ group, a similar
pattern was observed, all P-values o0.05, except the VEP
amplitude modulation in comparing the 1050 vs 200 ISI did not
reach statistical significance. No significant differences were
observed between the shorter ISIs for either group. Figure 2b
(middle) provides a summary of these findings.

Lateral occipital sites
First peak, 145–165 ms: At ~ 150 ms, a significant ISI × group
interaction was observed over the bilateral occipital sites
indicating differential adaptation across groups, left scalp: F
(4,112) = 7.6, P= 0.002, partial η2 = 0.21; right scalp: F(4,112) = 3.8,
P= 0.02, partial η2 = 0.12. To unpack how the dynamics of
adaptation differed between SCZ and NT, follow-up within-group
ANOVAs and paired t-tests were conducted (see Table 2B). For the
NT group, this revealed a significant main effect of ISI, and the
following pattern of significant differences between conditions
was observed: (1) when comparing the two slower ISIs against all
other ISIs, (2) when comparing within the faster ISIs (550 vs 200)
and (3) when comparing between the slowest ISIs (2550 vs 1050),
all P-values o0.05. In all these comparisons, smaller VEP
amplitudes were observed for faster ISIs. For the SCZ group,
follow-up comparisons also revealed a significant main effect of
ISI. As in the NT group, VEP amplitudes were significantly reduced
under the faster ISIs (200, 300, 550) when compared with the
slower ISIs (1050 and 2550), all P-values o0.05. In contrast to the
NT group, in the SCZ group there were (1) no significant VEP
amplitude modulations observed when comparing between the
faster ISIs (that is, 200, 300 and 550) and (2) no significant VEP
amplitude modulations observed when comparing the slowest
ISIs (that is, 1050 vs 2550). For both the groups, no significant
differences in VEP amplitudes were noted when comparing the
two fastest ISIs (200 vs 300). Refer to Figure 2b (left and right)
where adaptation curves are plotted. Overall, adaptation mechan-
isms in the SCZ group are clearly less sensitive, failing to
differentiate between the slower stimulation rates as well as
between the fastest simulation rates, but showing significant
modulation when VEPs recorded to fast vs slow presentation rates
were examined.
Second peak, 235–255 ms: Last, a significant main effect of group

was observed over the left occipital scalp at ~ 250 ms, F(1,28) = 5.6,
P= 0.02, partial η2 = 0.17, once again reflecting significantly
reduced VEP amplitudes in the SCZ group compared with the
NT group. A significant main effect of ISI, was also observed over
the bilateral occipital scalp at this time, left: F(4,112) = 6.4,
P= 0.002, partial η2 = 0.19; right: F(4,112) = 7.4, P= 0.001, partial
η2 = 0.21. The follow-up planned t-tests reveal a significant
reduction in the VEP amplitude elicited under the fastest ISI
(200) as compared with the amplitude under the 300, 550 and
1050 ISI (P-values o0.02). Unexpectedly, the VEP amplitude under
the 550 ISI was also significantly enhanced compared with all the
other ISIs (P-values o0.02). There were no significant group × ISI
effects noted at this time period over the lateral occipital sites.
Scalp topographic maps for the time periods of interest are

presented for each ISI for both the groups in Figure 3, providing a
more complete view of the distribution of effects and the
evolution of the VEP. Overall the topographies for both the
groups are broadly similar (although note the large overall
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Figure 2. (a) Group VEPs—visual evoked responses at the three scalp sites of interest for the neurotypical group (top) and schizophrenia-
spectrum group (bottom). Highlighted in gray are the time periods used for statistical analysis. A significant amplitude effect is observed over
the midline occipital scalp at an early time period. A significant adaptation effect is observed more laterally at 150 ms and at 200 ms over the
midline. (b) Tuning curves—representing the significant visual adaptation effects between groups. ISI, interstimulus interval; VEP, visual
evoked potential. Top: *, significant main effect; **, significant interaction effect. Bottom: colored *, significantly different from all others;
colored #, significant difference between the short ISIs; ^, significantly different from most ISIs; bracket, no significant difference within
bracket; if starred, significant difference between brackets.
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amplitude differences between groups). For both the groups,
topographies at ~ 150 ms for the two slow ISIs showed a more
bilateral activation pattern, as compared with the central occipital
pattern noted for the faster ISIs. For the NT group, there is a clear
decrease in the amplitude of activation in the topographies with
increasingly faster ISIs. For the difference in topographies for the
time periods in which an adaptation effect between the groups
was observed (significant group × ISI interaction), see Supplemen-
tary Figure 1.

Individual participant-level VEP analysis. Individual-level compar-
isons were conducted at time periods during which a significant
group × ISI effect was observed (see Table 3). Testing at 145–
165 ms showed that statistically robust adaptation effects could
be established at the individual participant level in nearly all the
participants in the NT group when comparing the amplitude to
2550 ms ISI against each of the fast ISIs (200, 300, 550) at both the
lateral occipital sites (right: 14 to 15 and left: 13 to 14 participants).
When comparing the 2550 ms ISI against the 1050 ms ISI,
differences at the individual participant level were seen in 14 NT
participants at the right occipital site and 12 at the left. For the
SCZ group, when comparing the 2550 ms ISI against the fast ISIs,
individual-level differences were noted in 9 to 10 participants at
the left occipital site and 10 to 12 at the right; with this number
dropping to 7 participants (out of the total 15) when comparing
against the 1050 ms ISI at the right occipital scalp. As in the group-
level analysis, the single-subject SCZ VEP amplitudes appeared to
be less sensitive to modulation elicited by the slower ISI. A chi-
square test indicated a significantly greater frequency of adaptors
in the 2550 vs 1050 ISI for NT, as compared with the SCZ group for
both the lateral occipital sites, left: χ2(1) = 9.6, Po0.05; right:
χ2(1) = 15, Po0.05. There was also a significant difference in the

proportion of adaptors in NT when comparing the 2550 vs the
fastest ISI for the left occipital site (Po0.05) and a trend towards
significance for the right occipital site (2550 vs 300, P= 0.067).

Sensitivity of visual adaptation deficits. To further examine the
robustness and clinical usefulness of second-order 'dynamic'
properties of the visual system, we subjected the VEP measures
recorded under a representative 'fast' ISI (300 ms) and the two
'slow' ISIs (1050 and 2550 ms) over the lateral occipital sites (at
~ 150 ms) to a binary logistic regression. In using these combined
adaptation measures to predict group membership (threshold =
0.5), we were able to correctly classify 80% of our sample (13/15
SCZ, 11/15 NTs, Po0.01). This model performs significantly better
than chance and is not improved by the addition of predictors
reflecting VEP amplitude differences between the groups (VEP at
Oz under the 2550 ISI at ~ 110 ms).

Experiment 2
Group-level somatosensory evoked potential analysis. Both the
scalp sites of interest exhibited similar SEP morphology and time
course. The response was positive going over the centro-parietal
scalp, and inverted over the frontal midline scalp. The SEP
amplitude was visibly reduced in SCZ, and as with the visual
response this was most apparent for slower presentation rates.
Both sites showed a singular prominent peak that inverted across
the sites, with maximal amplitude occurring at ~ 65 ms. Figure 4a
depicts the group SEPs for sites of interest for the NT group (top)
and the SCZ group (bottom). The results from the main ANOVA
and post hoc comparisons for significant group × ISI interactions
are presented in Tables 4A and 4B, respectively. The main findings
are summarized below. Figure 4b depicts the SEP tuning curves

Table 2A. Visual adaptation—2× 5 ANOVA

Factors Left occipital Midline occipital Right occipital

1st Peaka Group
ISI
Group× ISI

F(1,28)= 7.4, P= 0.01
F(4,112)= 31.4, Po0.001
F(4,112)= 7.6, P= 0.002

F(1,28)= 7.4, P= 0.01
NS
NS

NS
F(4,112)= 33.9, Po0.001
F(4,112)= 3.8, P= 0.02

2nd Peaka Group
ISI
Group× ISI

F(1,28)= 5.6, P= 0.02
F(4,112)= 6.4, P= 0.002
NS

NS
F(4,112)= 36.4, Po0.001
F(4,112)= 5.1, P= 0.006

F(1,28)= 3.6, P= 0.06
F(4,112)= 7.4, P= 0.001
NS

Abbreviations: ANOVA, analysis of variance; ISI, interstimulus interval; NS, not significant; VEP, visual evoked potential. aTime window for analysis for the first
and second most prominent peaks are 100–120 ms and 190–210 ms for the midline VEP, and t= 145–165 ms and 235–255 ms for the lateral occipital VEPs,
respectively.

Table 2B. Visual adaptation—follow-up tests unpacking the significant group× ISI effect

Group Left occipital 1st peak (145–165 ms) Midline occipital 2nd peak (190–210 ms) Right occipital 1st peak (145–165 ms)

NT F(4,56)= 24.6, Po0.001 F(4,56)= 24.5, Po0.001 F(4,56)= 29, Po0.001
2550 vs all, Po0.001
1050 vs all, Po0.002
550 vs 200, P= 0.038
300 vs 200, NS

2550 vs all, Po0.001
1050 vs all, Po0.005
200, 300, 550, NS

2550 vs all, Po0.001
1050 vs all, Po0.002
550 vs 200, P= 0.021
300 vs 200, NS

SCZ F(4,56)= 7.5, Po0.002 F(4,56)= 12.3, Po0.001 F(4,56)= 8.2, Po0.002
2550 vs 200, 300, 550; Po0.03
1050 vs 200, 300, 550; Po0.005
200, 300, 550; NS

2550 vs all, Po0.02
1050 vs 300, 550; Po0.004
200, 300, 550, NS

2550 vs 200, 300, 550; Po0.009
1050 vs 200, 300, 550; Po0.007
200, 300, 550; NS

Abbreviations: ISI, interstimulus interval; NS, not significant; NT, neurotypical adult; SCZ, schizophrenia. For each group, the ISI effect is tested with the analysis
of variance and planned comparisons (paired t-tests) within group are conducted to identify where ISI effect is significant.
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for both the groups for both the sites of interest. As can be seen in
the plots, the SCZ group exhibited a pattern of ISI-induced
modulation that was very similar to that of the NT group, reflected
by adaptation curves with quite similar slopes, in contrast to what
was observed for the VEPs (Figure 2b).
No significant group or ISI × group effects were observed at the

centro-parietal scalp site. However, a significant ISI effect was
observed over this site, F(5,110) = 24.2, Po0.001, partial η2 = 0.52.
Follow-up planned comparisons revealed a robust adaptation
effect, with faster ISIs resulting in significantly reduced SEP

amplitudes (all P-values o0.03; except when comparing 350 vs
550 ISI, P= 0.47).
A significant group × ISI effect was observed for the midline

frontal site at this time period, F(5,110) = 2.9, P= 0.028, partial
η2 = 0.12, indicating a difference in SEP adaptation between the
groups. To characterize the dynamics of adaptation for the SCZ
and NT groups, follow-up ANOVAs and paired t-tests were
conducted for each group independently. The ANOVAs revealed
a significant ISI effect for both the groups, with faster ISIs leading
to attenuated SEP amplitudes. Follow-up planned t-tests showed

Figure 3. Visual scalp topographic maps—the activity across the entire electrode array is depicted for the five ISI conditions across the time
periods used for statistical analysis for both the groups. Overall topography is generally similar between the groups, although amplitude is
reduced in the SCZ group. Topographies differ at ~ 150ms for the two slow ISIs, showing a more bilateral activation pattern as compared with
the central occipital pattern noted in the faster ISIs. For the NT group, there is a clear decrease in the amplitude of activation in the
topographies with increasingly faster presentation rates (ISIs). ISI, interstimulus interval; NT, neurotypical adult; SCZ, schizophrenia.
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robust SEP modulation in the NT group, with significant amplitude
differences for all the ISIs pairs, except 200 vs 300. Follow-up
comparisons in the SCZ group showed significant differences
between the slowest ISI and all other ISIs (2550 vs all), as well as
between the fastest ISI and most other ISIs (except 550).
Comparisons against and between some of the faster ISIs (300,
200, 550) did not reveal a consistently significant effect. Refer to
Figure 4b (right) for the somatosensory tuning curve, a graphical
representation of these findings; we present the tuning curve for
the centro-parietal site in Figure 4b (left) for comparison. Unlike
what was seen in the visual system, somatosensory adaptation
differences in SCZ appears less obvious and less consistent. The
sensory registration deficits here are also of smaller magnitude
and not significant across all the sites examined. There was no
significant relationship between SEPs and PANSS scores.
Scalp topographic maps for the time period of interest (45–

75 ms) are presented for each ISI for both the groups in Figure 5.
Overall, the topographies for the two groups are highly similar,
with prominent midline frontal and centro-parietal foci. These are
consistent with neural generators in contralateral (to stimulation)
somatosensory cortex. This topography is seen across all ISIs, with
strength of activity decreasing as a function of faster ISIs. Further,
the maps illustrate that the amplitude of the response is
diminished for the SCZ compared with NT group, and this is
apparent for all ISIs. For the difference in topographies for the
adaptation effect between groups (significant group × ISI interac-
tion), see Supplementary Figure 2.

Individual participant-level SEP analysis. Individual-level compar-
isons were conducted for the midline frontal site where a
significant group × ISI effect was observed (Table 5). Testing at
the 45–75 ms time period revealed significant differences for 11 of
the 12 participants in the NT group when comparing the
amplitude to 2550 ms ISI against the fastest ISI, with this number
dropping to 8 for comparisons against 550, and 5 for comparisons
against 1050. For the SCZ group 10 of the 12 participants showed
significant differences when comparing the 2550 ms ISI against
the 250 ISI, with this number dropping to 4 when comparing
against the 550 ms ISI and 3 when comparing against 1050. As in
the group-level analysis, there was a drop-off in the sensitivity of
SEP amplitude modulation for comparisons between the slower
ISIs. However, this drop-off was seen for both the groups. Perhaps
a more interesting contrast for this sensory system might be
occurring when modulating to one of the next slowest conditions

(550 ISI)—as this appears to be the condition in which the number
of single-subject adaptors between groups is most discrepant
(NT = 8, SCZ = 4). A chi-square test, however, did not support a
significantly greater frequency of adaptors in the NT group
compared with the SCZ group for any ISI comparison.

DISCUSSION
Here, we examined sensory adaptation properties of the visual
and somatosensory systems in the participants with a
schizophrenia-spectrum disorder using the high-density electrical
mapping technique. VEP modulations elicited by parametrically
varying stimulation rates were starkly different in patients
compared with neurotypical controls, a finding that was most
robust over lateral occipital scalp sites. This can be seen in the VEP
tuning curves depicted in Figure 2b, where the SCZ group display
a considerably shallower adaptation response profile. This less
sensitive adaptation was confirmed by formal statistical analyses,
with significant differences in VEP amplitude only noted in the
SCZ group when the extremes of ISI conditions were compared
(that is, the two slower ISIs to the three fast ISIs). No significant
differences were noted when comparing between the two slowest
ISIs or between any of the fastest three ISIs for the patient group,
wholly different to the response profile observed in the NT control
group, where clear decrements in response amplitude were
observable across almost all increments in the rate of stimulation.
In contrast, adaptation profiles in the somatosensory system
followed a rather more similar pattern across the groups, as can be
seen in Figure 4b where the slopes of the SEP tuning curves for
patients and neurotypical controls are largely comparable. On
closer examination, significant differences between the groups do
arise, but only when very specific comparisons are made (for
example, the SEP amplitude elicited under the 1050 ISI is
significantly different to responses elicited at all other ISIs for
control participants, whereas in patients it is not significantly
different for comparisons to the 200 and 300 ISI responses).
Differences in basic sensory registration (that is, in the primary
sensory response) were also noted in both sensory modalities
examined, with patients showing reduced evoked response
amplitudes to both visual and somatosensory inputs. As with
the adaptation findings, SEP amplitude reductions were substan-
tially less robust than the VEP reductions. The PANSS data were
not significantly related to our event-related potential findings. Of
note, a previous large-scale study of visual processing in
schizophrenia also noted no meaningful association between
symptomatology and visual processing deficits in a completely
independent and considerably larger sample.11 In fact, the small
correlation noted between the VEP amplitude and symptom
severity scores, was in the opposite direction of what would be
expected, with severe symptoms associated with larger VEPs.
Further, symptom measures only accounted for 11% of the
variance in VEP amplitudes.
Although the current results apparently point to more severe

sensory processing issues in the visual than the somatosensory
system, it bears emphasizing that the base SEP itself did indeed
show significant attenuation in our SCZ cohort, consistent with an
early body of work pointing to somatosensory processing
dysfunction in this clinical group.89,90 It also bears mentioning
that adaptation functions here were only assessed using a single
suprathreshold vibrotactile stimulation protocol and that greater
deficits might well be uncovered for other somatosensory
stimulation types or if stimulation nearer threshold were to
be used.
Thus, despite the apparent differences in the severity of

adaptation deficits across sensory systems, the presence of basic
processing deficits in both sensory systems tested here, and the
overwhelming body of evidence pointing to auditory processing
deficits,91–95 are all consistent with a 'panmodal' theory of sensory

Table 3. Visual adaptation single-subject analysis

2550 vs

200 300 550 1050

Left occipital
Neurotypical 15* 14a 14a 12*
Schizophrenia 9 10 10 9

Right occipital
Neurotypical 13 14a 13 14**
Schizophrenia 11 10 12 7

Midline occipital
Neurotypical 7 10 10 9
Schizophrenia 6 10 11 6

aTrend (left: P= 0.067) in the chi-square analysis, indicating a significant
difference in frequency of adaptors between the groups. *Po0.05,
**Po0.01.
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Figure 4. (a) Group SEPs—somatosensory evoked responses at the two scalp sites of interest for the neurotypical (NT) group (top) and
schizophrenia (SCZ)-spectrum group (bottom). Highlighted in gray is the time period used for statistical analysis. A significant ISI effect but no
group differences is observed over the centro-parietal scalp contralateral to stimulation side. A significant adaptation effect is observed over
the midline frontal scalp. (b) Tuning curves—representing somatosensory adaptation effects in both the groups. ISI, interstimulus interval; SEP,
somatosensory evoked potential. Top: *, significant main effect; **, significant interaction effect. Bottom: colored *, significantly different from
all others; ^, significantly different from most ISIs; bracket, no significant difference within bracket; if starred, significant difference between
brackets.
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processing deficits in this disorder.96,97 It will be of major research
interest to assess whether deficits across sensory systems show
similar levels of severity at the individual patient level. It is as yet
unknown whether similar underlying deficits at the cellular,
synaptic or connectivity level contribute to these deficits across
modalities, although this is surely the parsimonious explanation,
but it remains possible that the underlying etiology of these
deficits could be unique to a given sensory system.
Auditory sensory plasticity, particularly with regard to adapta-

tion and 'gating' of the auditory evoked potential, has been very
well characterized in SCZ,39,98,99 whereas the examination of visual
plasticity in this population has been much less frequently examined
and has yielded somewhat inconsistent findings.28,64,100,101 In turn,
considerably more work will be required before somatosensory
plasticity in SCZ is fully characterized. In fact, the literature on
somatosensory adaptation in healthy controls is still emerging,
with one interesting finding pointing to the activation of similar
frontal regions in a paired somatosensory gating paradigm and a
paired audio gating paradigm in neurotypicals.102 This work points
to a need in future studies to also examine potential contributions
of higher-order regions (that is, outside primary sensory cortices)
to sensory gating.
It is of considerable interest that a recent study has reported

SEP deficits in a large group of individuals who were determined
to be at very high genetic risk for developing schizophrenia,103

further suggesting that somatosensory processing deficits may
prove useful as endophenotypes for this disorder. Another recent
study used the steady-state response technique to assess
the inter-trial temporal stability of the cortical somato-
sensory response in SCZ, with results pointing to both reduced

amplitudes and more variable phases of the steady-state
response,104 highly reminiscent of the early work of Shagass and
colleagues.89,90

An obvious question that arises concerns the mechanisms
underlying adaptation. In the visual system particularly, we note
that the VEP modulation between 'fast' and 'slow' ISIs, while
reduced in amplitude, is nonetheless apparent in SCZ and that it is
only at finer levels of granularity that deficits become more
obvious (for example, in comparing 2550 vs 1050 (slow vs slow) or
200 vs 550 (fast vs fast)). An argument could be made for separate
mechanisms underlying adaptation to very fast vs slower sensory
stimulation. The fact that both visual and somatosensory systems,
in both the groups tested, do not strongly differentiate between
each of the fastest ISIs might suggest an adaptive mechanism
whereby inconsequential stimulation in rapid succession is simply
‘shut down’ to conserve resources. This form of adaptation could
result from an active gating mechanism (for example, inhibition)
or a passive one, suggestive of a refractory period (for example,
depletion). The mechanism underlying adaptation to the slower
ISIs may then represent an additional filter. Under these
conditions, in NT controls, we observed evoked responses that
were still dampened by a faster ISI, but which were also specific to
the presentation rate—that is to say that the response to the 1050
ISI was significantly greater than to the 'fast' ISIs, but also
significantly smaller than to the next 'slowest' ISI (2550 ms). In SCZ,
however, in the visual system, the 1050 ISI did not elicit a response
that was significantly different than was seen for the 2550 ISI
condition.
In this sense, the event-related potential modulation to the slow

ISIs could be said to more closely resemble a 'tuning in' to the
presentation rate rather than a 'shutting off' to repetitive
stimulation. A recent paper, examining response modulations in
the auditory system argues for dissociable effects of so-called
'repetition suppression', elicited by simple repetition, and 'expec-
tation suppression', a different pattern of modulation elicited by
the predictability of subsequent stimuli.105 In the current study, it
is possible that modulations at slower presentation rates rely more
heavily on this predictability network, which might be particularly
impacted in SCZ. Similarly, separate mechanisms in the auditory
system have been recently proposed to explain P50 and N200
adaptation (dubbed 'gating out') and mismatch negativity
response and P3 adaptation (dubbed 'gating in').106,107 A related
study comparing N1 amplitude across presentation rates in an
auditory blocked design also found significant adaptation
differences between SCZ and controls at slower ISIs (1 and 4 s)
but not at fast ISIs (250 and 500 ms).108 The authors there
concluded that adaptation to slow and fast stimuli both rely on
the same sensory memory systems, suggesting perhaps that no
deficits are seen between groups in the shorter ISI in which the
auditory memory trace for each stimulus is held only for short
periods of time before comparison with the next, as this poses a
smaller challenge on the system than longer ISIs. An analogous
explanation could also fit the sensory adaptation deficits noted in
the current investigation.
Another possible explanation could relate to increased unrelia-

bility of neural signals in SCZ when sensory systems are not being

Table 4A. Somatosensory adaptation—2× 6 ANOVA

Time Factors Centro-parietal Frontal midline

45–75 ms Group NS F(1,22)= 4.5, P= 0.046
ISI F(5,110)= 24.2, Po0.001 F(5,110)= 50.9, Po0.001
Group× ISI NS F(5,110)= 2.9, P= 0.028

Abbreviations: ANOVA, analysis of variance; ISI, interstimulus interval; NS, not significant.

Table 4B. Somatosensory adaptation—follow-up tests unpacking the
significant group× ISI effect

Group Frontal midline

NT F(5,55)= 36.7, Po0.001
2550 vs all, Po0.005
1050 vs all, Po0.006
550 vs all, Po0.04
300 vs 150, P= 0.002
200 vs 150, P= 0.013
200 vs 300, NS

SCZ F(5,55)= 16.9, Po0.002
2550 vs all, Po0.04
1050 vs 150, 200, 550; Po0.05
300 vs 150, Po0.002
200 vs 150, P= 0.01
550 vs 150, 300 vs 200, 550 vs 200, 1050 vs 300, NS

Abbreviations: ISI, interstimulus interval; NS, not significant; NT, neuroty-
pical adult; SCZ, schizophrenia. For each group, the ISI effect is tested with
the analysis of variance and planned comparisons (paired t-tests) within
group are conducted to identify where ISI effect is significant.
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driven to depletion. Some have shown that increased unreliability
(that is, reduced inter-trial coherence) could account for auditory
P50 gating deficits in SCZ109 and as mentioned above, this may
also account for differences in the somatosensory steady-state
response. An unreliable signal could also result from abnormal
neural synchrony in local sensory circuits, cortical sensory–frontal
circuits and cortical sensory–thalamo–frontal circuits, and aberrant
neurotransmitter functioning.110–113 Further, these findings are in
line with neurodevelopmental and altered connectivity concep-
tualizations of SCZ.114–117 Of course, none of these explanations
are mutually exclusive and further research will clearly be
necessary to disentangle the mechanisms of short-term sensory
plasticity observed in the current study and to understand exactly
how these measures relate to those obtained in the auditory
adaptation experiments discussed above. One might also argue
that as amplitude deficits are reported in the literature for patients
with schizophrenia, it could be that the VEP in this population
simply asymptotes before that of controls, resulting in less room
for adaptation effects to be noted, particularly between the
responses to the slower ISIs (that is, a ceiling effect). However,
examination of individual participant data revealed that even for
neurotypical controls with comparable VEP amplitudes (that is,
those controls with the lowest amplitude VEPs), adaptation was
still evident, whereas in the patient comparators (that is, those
patients with the largest VEPs), it was not.
It will also be important to determine whether these adaptation

deficits can be useful as endophenotypes of schizophrenia,118 a
promising proposition given that early visual sensory processing
deficits have already been found in healthy first-degree biological
relatives of schizophrenia probands.13 As an endophenotype,
adaptation would lie closer to the ‘shared genetic risk’ contribut-
ing to the clinical state while being genetically less complex than
higher-order symptoms and easier to objectively measure. It will
also be informative to assess whether adaptation deficits are
related to risk variants on schizophrenia-related risk genes
associated with NMDA-mediated processing, because as intro-
duced above, it seems likely that adaptation processes rely heavily
on NMDA-mediated mechanisms. Again, it is instructive that basic

visual sensory processing differences have already been asso-
ciated with two NMDA-related genes, DTNBP1 and NOS1, both
implicated in schizophrenia risk.119,120 Emerging evidence also
implicates NMDA dysfunction in altered somatosensory responses
in animal models of schizophrenia.121,122 This convergence of
evidence leads us to hypothesize that variation in genes
implicated in glutamatergic function may very well influence
both visual and somatosensory adaptation.

CONCLUSION
In the visual system, robust adaptation deficits, detectable at the
individual-subject level, were observed over lateral occipital sites.
These electrophysiological markers of visual adaptation were used
to correctly classify group membership in 13/15 SCZ and 11/15 NT
(80% correct classification rate). To test the specificity of these
findings, a somatosensory adaptation experiment was also
conducted. Although differences in somatosensory adaptation
were noted, the overall SEP adaptation pattern was highly similar
between the groups and it is was only in comparing very specific
ISI pairs that differences emerged. Decreased VEP and SEP
amplitudes were also noted in SCZ. Further study is needed to
uncover mechanisms underlying these effects, with altered
neuronal synchronization and aberrant glutamatergic signaling
being potential candidates.
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Figure 5. Somatosensory scalp topographic maps—the activity across the entire electrode array is depicted for the six ISI conditions across
the time period used for statistical analysis for both the groups. Overall topography is nearly identical between the groups, with a prominent
fronto-midline and centro-parietal focus. This topography is consistent between all the ISIs tested. The strength of the activity presented in
the topographies decreases as the ISIs become faster. Overall, the amplitude of activation is greater in the NT group. ISI, interstimulus interval;
NT, neurotypical adult; SCZ, schizophrenia.

Table 5. Somatosensory adaptation—single-subject analysis

Midline frontal 2550 vs 150 200 300 550 1050

Neurotypical 11 10 10 8 5
Schizophrenia 10 8 9 4 3
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