Statistics 1

Summary Sheet

John S Butler (TU Dublin)

Course Twitter Account

Measures of Location

Different aspects of a distribution of data can be summarised by the measures of location:

- 1. The First Moment: Mean, Mode or Median;
- 2. The Second Moment: Variance, Standard Deviation;
- 3. The Third Moment: Skewness.

Second Moment: Spread

Measures of Location (cont.)

Third Moment: Symmetry

Definitions

Define some event A that can be the outcome of an experiment. Pr(A) is the probability of a given event A will happen. Rules:

- $\Pr(A)$ is between 0 and 1, $0 \le \Pr(A) \le 1$;
- Pr(A) = 1, means it will definitely happen;
- $\Pr(A) = 0$, means it will definitely **not** happen;
- $\Pr(A) = 0.05$, is arbitrarily considered unlikely.

Sample Space and Events

The **Sample Space**. S, of an experiment is the universal set of all possible outcomes for that experiment, defined so, no two outcomes can occur simultaneously. For example:

- Throwing a die $S = \{1, 2, 3, 4, 5, 6\};$
- Tossing two coins $S = \{HH, TH, HT, TT\}$
- An event, A, is a subset of the sample space S. For example
 - Throwing a die $S = \{3, 4, 6\};$
 - Tossing two coins $S = \{TH, TT\}.$

Axioms of Probabilities

For an event A subset S associated a number $\Pr(A),$ the probability of A, which must have the following properties

- $\Pr(A \cap B) = 0$; $\Pr(A \bigcup B) = \Pr(A) + \Pr(B)$;
- Probability of the Null Event $\Pr(\emptyset) = 0$:
- The probability of the complement of $A, \Pr(\bar{A}) = 1 \Pr(A)$:
- $\Pr(A \bigcup B) = \Pr(A) + \Pr(B) \Pr(A \cap B).$

Counting Rules

1. Consider selecting r objects from a group of n distinct objects, sampling $\ensuremath{\textbf{with replacement}}$

$$n \times n \times \cdots \times n = n^r$$

2. Consider selecting r objects from a group of n distinct objects, sampling ${\rm without}\, {\rm replacement}.$ The total possible of ${\rm ordered}\, {\rm samples}\,$ is

$${}^{n}P_{r} = \frac{n!}{(n-r)!}$$

3. Consider selecting r objects from a group of n distinct objects, sampling **without replacement**. The total possible of **non-ordered** samples is

$$\binom{n}{r} = {}^{n} C_{r} = \frac{n!}{(n-r)!r!}$$
Binomial Coefficient

4. The number of distinct arrangement of n objects of which n_1 are of one kind, n_2 are of a second kind, ..., n_k are of a $k^t h$ kind is given by the **multinomial coefficient**

$$\frac{n!}{n_1!n_2!\cdots n_k!} \quad \text{where} \quad \Sigma_{i=1}^k n_i = n$$

Conditional Probability

The Conditional Probability $\Pr(A|B)$ denotes the probability of the event A occurring given that the event B has occurred,

$$\Pr(A|B) = \frac{\Pr(A \cap B)}{\Pr(B)}.$$

Example: The rain in Ireland

A normal probability would be what is the probability it is going to rain, $\Pr(\mathsf{rain})$. A conditional probability would, be what is the probability it is going to rain **given** that you are in freland, $\Pr(\mathsf{rain}|\mathsf{reland})$,

 $\Pr(\text{rain}|\text{Ireland}) = \frac{\Pr(\text{rain} \bigcap \text{Ireland})}{\Pr(\text{Ireland})}$

where the probability of rain is $\Pr(\mathsf{rain})=0.3$, the probability of being in Ireland is $\Pr(\mathsf{Ireland})=0.4$ and the probability of being in Ireland and it raining is $\Pr(\mathsf{rain}\bigcap\mathsf{Ireland})=0.2$.

$$\Pr(\text{rain}|\text{Ireland}) = \frac{0.2}{0.4} = 0.5,$$

You could be interested in the probability that you are in Ireland given that it is raining,

 $\Pr(\text{Ireland}|\text{rain}) = \frac{\Pr(\text{rain} \bigcap \text{Ireland})}{\Pr(\text{rain})} = \frac{0.2}{0.3} = 0.75$

Bayes Theorem

Bayes Theorem states

$$\Pr(A|B) = \frac{\Pr(B|A)P(A)}{\Pr(B)}$$

Example: Diagnostic test

The probability that an individual has a rare disease is $\Pr(\mathsf{Disease}) = 0.01.$ The probability that a diagnostic test results in a positive (+) test given you have the disease is $\Pr(+|\mathsf{Disease}) = 0.95$. On the other hand, the probability that the diagnostic test results in a positive (+) test given you do not have the disease is $\Pr(+|\mathsf{No}\mathsf{Disease}) = 0.1$. This raises the important question if you are given a positive diagnosis, what is the probability you have the disease $\Pr(\mathsf{Disease}) = 1.7$ From Bayes Theorem we have:

 $Pr(Disease|+) = \frac{Pr(+|Disease) Pr(Disease)}{Pr(+)}$

The probability of a positive test is,

Pr(+) = Pr(+|Disease) Pr(Disease) + Pr(+|No Disease) Pr(No Disease),

$$\Pr(+) = 0.1085.$$

$$\Pr(\text{Disease}|+) = \frac{\Pr(+|\text{Disease}) \Pr(\text{Disease})}{\Pr(+)} = \frac{0.95 \times 0.01}{0.1085} = 0.0875576$$

This can also be done in a simple table format, by assume a population of 10,000

Group	+ Diagnosis	- Diagnosis	Total
Disease	95	5	100
No Disease	990	8,910	9,900
Total	1,085	8,915	10,000

From the table we can calculate the same answer

 $\Pr(\text{Disease}|+) = \frac{95}{1085} = 0.0875576.$

Discrete Distribution

Discrete Distribution(cont.)

Binomial Distribution

Continuous Distribution

Normal Distribution

The formula for the Normal distribution is:

$$(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

where μ is the mean and σ standard deviation of the distribution, which is denoted as $\mathcal{N}(\mu, \sigma)$ The standard normal distribution, also called the zdistribution, is a special normal distribution where the mean is 0 and the standard deviation is 1, $\mathcal{N}(0, 1)$, as shown below.

Confidence Intervals

The general formula for confidence intervals is:

$$\operatorname{Cl}_{(1-\alpha)\times 100\%}: \bar{x} \pm z_{1-\alpha/2} \times \frac{s}{\sqrt{n}}$$

where α is a value between 0 and 1, $(1-\alpha) \times 100\%$ is the confidence level, $z_{1-\alpha/2}$ is a value from the standard normal distribution, \bar{x} is the observed sample mean and s is the observed sample standard deviation.

Hypothesis Testing

Five steps for Hypothesis testings

- 1. State the Null Hypothesis H_0 ;
- 2. State an Alternative Hypothesis H_{α} ;
- 3. Calculate a Test Statistic (see below);
- 4. Calculate a p-value and/or set a rejection region;

5. State your conclusions.

The next step is interpretation and discussion of the result.

z-test

Continuous Data

The test statistic is given by

$$Z = \frac{\bar{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}} \sim \mathcal{N}(0, 1)$$

where \bar{x} is the observed mean, μ is the historical mean, σ is the standard deviation and n is the number of observations. $\mathcal{N}(0,1)$ is the normal distribution with a mean of 0 and a standard deviation of 1. Do supplements make you faster?

```
The effect of a food supplements on the response time in rats is of interest to a biologist. They have established that the normal response time of rats is \mu~=1.2 seconds. The n~=100 rats were given a new food supplements. The following summary statistics were recorded from the data \bar{x}~=1.05 and \sigma~=0.5 seconds
```

- 1. The rats in the study are the same as normal rats, $H_0: \mu = 1.2$.
- 2. The rats are different, H_{lpha} : $\mu \neq 1.2$.
- 3. Calculate a Test Statistic $Z = \frac{1.05 1.2}{\frac{0.5}{\sqrt{100}}} = -3$
- 4. Reject the Null hypothesis H_0 if Z < -1.96 and Z > 1.96
- 5. The data suggests that rats are faster with the new food.

Proportional Data

The test statistic is given by

$$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0 q_0}{n}}} \sim \mathcal{N}(0, 1)$$

where \hat{p} is the observed proportion, p_0 is the historical proportion, q_0 is the complement $q_0 = 1 - p_0$, and n is the number of observations.

t-test

The

paired t-test

The test statistic is given by

$$=\frac{\bar{x}-\bar{\mu}_0}{\frac{s}{\sqrt{n}}}\sim t_c$$

a, df

where \bar{x} is the observed mean, μ_0 is the null mean, s is the standard deviation and n is the number of observations. α is the alpha level and df is the degrees of freedom.

unpaired t-test

$$r = rac{ar{x}_1 - ar{x}_2}{s_p \sqrt{rac{1}{n_1} + rac{1}{n_2}}} \sim t_{lpha, df}$$

where $s_p = \sqrt{\frac{s_{x_1}^2 + s_{x_2}^2}{2}}$ is the pooled sample standard deviation, \bar{x}_1 and \bar{x}_2 are the sample means, n_1 and n_2 are the sample sizes.

Selected Bibliography

- 1. Montgomery, D. C., & Runger, G. C. (2010). Applied statistics and probability for engineers. John Wiley & sons.
- 2. Peck, R., & Devore, J. L. (2011). Statistics: The exploration analysis of data. Cengage Learning.
- Larson, H. J. (1982). Introduction to probability and statistical inference. JOHN WILEY & SONS, INC., 605 THIRD AVE., NEW YORK, NY 10158, 1982, 480.
- Walpole, R. E., Myers, R. H., Myers, S. L., & Ye, K. (1993). Probability and statistics for engineers and scientists (Vol. 5). New York: Macmillan.
- 5. James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (Vol. 112, p. 18). New York: Springer book website.
- 6. Poldrack R. Statistical Thinking in the 21st Century 2020 website.
- 7. Gareth, J., et al. An introduction to statistical learning. Vol. 112. New York: Springer, 2013.
- 8. Fry, H. Hello World: How to be Human in the Age of the Machine, Doubleday, 2018
- 9. Alexander, R. Telling Stories with Data 2022 website
- 10. Butler, J. S., Course GitHub Repository

Notation

- \bar{x} mean of a list of numbers x_i
- + $\,\sigma$ standard deviation of a list of numbers x_i
- + σ^2 variance of a list of numbers
- + $\Pr(A)$ probability of event A
- + $\Pr(\bar{A})$ probability of not event A
- + $\Pr(A|B)$ probability of event A given event B is known
- + $\Sigma_i^n x_i$ the sum of a list of number x_i
- n! n factorial is $n \times (n-1) \times \cdots \times 1$
- 5! 5 factorial is $5 \times (5-1) \times (5-2) \times (5-3) \times (5-4) = 5 \times 4 \times 3 \times 2 \times 1 = 120$
- $\binom{n}{k} = {}^{n} C_{k}$ *n* choose *k* equals to $\frac{n!}{k!(n-k)!}$
- $\binom{5}{3} = {}^5C_3$ 5 choose 3 equals to $\frac{5!}{3!(5-3)!} = \frac{5!}{3!2!} = \frac{5 \times 4 \times 3 \times 2 \times 1}{3 \times 2 \times 1 \times 2 \times 1} = 10$
- ${}^{n}P_{k}$ n pick k equals to $\frac{n!}{(n-k)!}$
- ${}^{5}P_{3}$ 5 pick 3 equals to $\frac{5!}{(5-3)!} = \frac{5!}{2!} = \frac{5 \times 4 \times 3 \times 2 \times 1}{2 \times 1} = 60$
- p p probability of a "win"
- + q q probability of a "loss" 1-p
- p^n p to the power of n is $p \times p \times \cdots \times p$
- + 0.1^4 0.1 to the power of 4 is $0.1 \times 0.1 \times 0.1 \times 0.1 \times 0.1$
- E[X] the expected value of a probability distribution
- + Var[X] the variance of a probability distribution
- e is the exponential which is it equal to approximately 2.718 it is comes up again and again in mathematics formulas
- H_0 null hypothesis
- H_{α} alternative hypothesis
- μ real mean (generally never known)
- + μ_0 historical mean
- $\cdot p_0$ is the historical proportion
- + \bar{x} observed mean given the data
- + \hat{p} is the observed sample proportion
- + $\mathcal{N}(\mu,\sigma)$ is the Gaussian distribution with mean μ and standard deviation σ
- + $\mathcal{N}(0, 1)$ is a special case of Gaussian distribution known as the Normal Distribution with mean 0 and standard deviation
- df-degrees of freedom
- + χ^2_{df} Chi (χ)-squared (²) distribution with degrees of freedom df

