Statistics 1

Summary Sheet
John S Butler (TU Dublin)

Course Twitter Account

Data Type

- Categorical - Ordinal
- Interval
- Ratio

Measures of Location

Different aspects of a distribution of data can be summarised by the measures of location:

1. The First Moment: Mean, Mode or Median;
2. The Second Moment: Variance, Standard Deviation;
3. The Third Moment: Skewness

First Moment: Middle

Second Moment: Spread

Measures of Location (cont.)

Third Moment: Symmetry

Mathematical Probability

Definitions

Define some event A that can be the outcome of an experiment.
Defne some event A that can be the outcome of an exper
Pr(A) is the probability of a given event A will happen.
Rules:
$\operatorname{Pr}(A)$ is between 0 and $1.0 \leq \operatorname{Pr}(A) \leq 1$;

- $\operatorname{Pr}(A)=1$, means it will defnitely happen:
$\operatorname{Pr}(A)=0$. means it will defnitely not happen:
$\operatorname{Pr}(A)=0.05$, is arbitrarily considered unlikely.

Sample Space and Events

The Sample Space, S. of an experiment is the universal set of all possible outcomes for that
ample:

- Throwing a die $S=\{1,2,3,4,5,6\}$; Tossing two coins $S=\{H H, T H, H T, T T\}$
An event, A, is a subset of the sample space S. For example.
Throwing a die $S=\{3,4,6\}$;
Tossing two coins $S=\{T H, T T\}$.

Axioms of Probabilities

For an event A subset S associated a number $\operatorname{Pr}(A)$, the probability of A, which For an event A subset S associated
must have the following properties
$\operatorname{Pr}(A \cap B)=0 ; \operatorname{Pr}(A \cup B)=\operatorname{Pr}(A)+\operatorname{Pr}(B):$
Probability of the Null Event $\operatorname{Pr}(\varnothing)=0$;
The probability of the complement of $A, \operatorname{Pr}(\bar{A})=1-\operatorname{Pr}(A)$
$\operatorname{Pr}(A \cup B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \cap B)$.

Counting Rules

1. Consider selecting r objects from a group of n distinct objects, sampling with replacement

$$
n \times n \times \cdots \times n=n^{r}
$$

2. Consider selecting r objects from a group of n distinct objects, sampling without replacement. The total possible of ordered sam ples is

$$
{ }^{n} P_{r}=\frac{n!}{(n-r)!}
$$

3. Consider selecting r objects from a group of n distinct objects, sampling without replacement. The total possible of non-ordered sampling
samples is

$$
\binom{n}{r}={ }^{n} C_{r}=\frac{n!}{(n-r)!r!} \text { Binomial Coefficient }
$$

4. The number of distinct arrangement of n objects of which n_{1} are of one kind, n_{2} are of a second kind, \ldots, n_{k} are of a $k^{t} h$ kind is given by the multinomial coefficient

$$
\frac{n!}{n_{1}!n_{2}!\cdots n_{k}!} \quad \text { where } \quad \Sigma_{i=1}^{k} n_{i}=n
$$

Conditional Probability

The Conditional Probability $\operatorname{Pr}(A \mid B)$ denotes the probability of the event A occurring given that the event B has occurred,

$$
\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A \bigcap B)}{\operatorname{Pr}(B)} .
$$

Example: The rain in Ireland

A normal probability would be what is the probability it is going to rain, $\operatorname{Pr}($ rain $)$. A conditional probability would, be what is the probability y it s going to rain given that you are in Ireland, $\operatorname{Pr}($ rain \mid reland $)$,

$$
\operatorname{Pr}(\text { rain } \mid \text { reland })=\frac{\operatorname{Pr}(\text { rain } \cap \mid \text { reland })}{\operatorname{Pr}(\text { reland })},
$$

where the probability of rain is $\operatorname{Pr}($ rain $)=0.3$, the probability of being in Ire $\operatorname{Pr}($ rain \cap Ireland $)=0.2$.

$$
\operatorname{Pr}(\text { rain } \mid \text { reland })=\frac{0.2}{0.4}=0.5,
$$

You could be interested in the probability that you are in reland given that it is raining.

$$
\operatorname{Pr}(\mid \text { reland } \mid \text { rain })=\frac{\operatorname{Pr}(\text { rain } \cap \text { |reland })}{\operatorname{Pr}(\text { rain })}=\frac{0.2}{0.3}=0.75 .
$$

Bayes Theorem

Discrete Distribution(cont.)

Binomial Distribution

The formula for the Binomial distribution is

$$
\operatorname{Pr}(k)=\binom{n}{k} p^{k} q^{n-k}, k=0,1,2, \ldots n,
$$

Example: Diagnostic test

$$
E[k]=n p, \quad \operatorname{Var}[k]=n p q
$$

The probability that an individual has a rare disease is $\operatorname{Pr}($ Disease $)=0.01$
The probability that a diagnostic test results in a positive $(+)$ test given you have The probabiity that a diagnostic test results in a positive (t) test given you have the disease $\operatorname{Pr}(+\mid$ Disease $)=0.95$. On the other hand. the probability that
the diagnostic test results in a positive $(+)$ test given you do not have the disease is $\mathrm{Pr}(+$ No Disease) $=0.1$. This raises the important question if you are given a positive diagnosis, what is the probability you have the disease $\operatorname{Pr}($ Disease $\mid+$)? From Bayes Theorem we have:

$$
\operatorname{Pr}(\text { Disease } \mid+)=\frac{\operatorname{Pr}(+\mid \text { Disease }) \operatorname{Pr}(\text { Disease })}{\operatorname{Pr}(+)}
$$

The probability of a positive test is.
$\operatorname{Pr}(+)=\operatorname{Pr}(+\mid$ Disease $) \operatorname{Pr}($ Disease $)+\operatorname{Pr}(+\mid$ No Disease $) \operatorname{Pr}($ No Disease $)$,

$$
\operatorname{Pr}(+)=0.1085 .
$$

$\operatorname{Pr}($ Disease $\mid+)=\frac{\operatorname{Pr}(+\mid \text { Disease }) \operatorname{Pr}(\text { Disease })}{\operatorname{Pr}(+)}=\frac{0.95 \times 0.01}{0.1085}=0.0875576$.
This can also be done in a simple table format, by assume a population of 10,000

Trm the table we can calculate the same answer
$\operatorname{Pr}($ Disease $\mid+)=\frac{95}{1085}=0.0875576$.

Discrete Distribution

Probability Mass Functions

The table of the probability mass function is:

$$
\begin{array}{r|r|r|r|r}
\text { Event Number } & 1 & 2 & 3 & 4 \\
\hline \text { Event value } x_{i} & -1 & 0 & 1 & 3 \\
\hline \text { Probability of Event } p\left(x_{i}\right) & 0.3 & 0.1 & 0.3 & 0.3
\end{array}
$$

The expected value of the distribution is:
$\mu=E[X]=\Sigma_{i} x_{i} \operatorname{Pr}\left(x_{i}\right)$,
$\Sigma_{i} x_{i}\left(x_{i}\right)=-1 \times 0.4+0 \times 0.1+1 \times 0.3+3 \times 0.3=0.9$

$$
\operatorname{Var}[X]=\Sigma_{i}\left(x_{i}-\mu\right)^{2} p\left(x_{i}\right)=\Sigma_{i}\left(x_{i}-0.9\right)^{2} p\left(x_{i}\right)=
$$

$=(-1-0.9)^{2} 0.3+(0-0.9)^{2} 0.1+(1-0.9)^{2} 0.3+(3-0.9)^{2} 0.3$ $=2.49$.

The table of the cumulative distribution function (cdf) is: | The table of the cumulative distribution function (caf) is | | | | | |
| :---: | ---: | ---: | ---: | ---: | :--- |
| r | <-1 | $-1 \leq r<0$ | $0 \leq r<1$ | $1 \leq r<3$ | $>=3$ |
| $F(r)$ | 0 | 0.3 | 0.4 | 0.7 | 1.0 |

Poisson Distribution

The formula for the Poisson distribution is:

$$
\begin{gathered}
\operatorname{Pr}(k)=\frac{\lambda^{k} e^{-\lambda}}{k!}, \quad k=0,1,2, . \\
E[k]=\lambda, \quad \operatorname{Var}[k]=\lambda,
\end{gathered}
$$

where λ is the mean and standard deviation of the distribution and k is the number of "wins" in a specified time or space

Continuous Distribution

Normal Distribution

The formula for the Normal distribution is:

$$
f(x)=\frac{1}{\sigma \sqrt{2} \pi} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}
$$

where μ is the mean and σ standard deviation of the distribution, which is denoted as $\mathcal{N}(\mu, \sigma)$ The standard normal distribution, also called the $z-$ distribution, is a special normal distribution where the mean is O and the standard deviation is $1, \mathcal{N}(0,1)$, as shown below.

Gaussian (Normal)
Distribution

Cummulative

Confidence Intervals

The general formula for confidence intervals is:

$$
\mathrm{Cl}_{(1-\alpha) \times 100 \%}: \bar{x} \pm z_{1-\alpha / 2} \times \frac{s}{\sqrt{n}}
$$

where α is a value between 0 and $1,(1-\alpha) \times 100 \%$ is the confidence level, $z_{1-\alpha / 2}$ is a value from the standard normal distribution, \bar{x} is the observed sample mean and s is the observed sample standard deviation.

Hypothesis Testing

Five steps for Hypothesis testings

1. State the Null Hypothesis H_{0};
2. State an Alternative Hypothesis H_{α}
3. Calculate a Test Statistic (see below);
4. Calculate a p-value and/or set a rejection region;
5. State your conclusions.

The next step is interpretation and discussion of the result.

z-test

Continuous Data

The test statistic is given by

$$
Z=\frac{\bar{x}-\mu_{0}}{\frac{\sigma}{\sqrt{n}}} \sim \mathcal{N}(0,1)
$$

where \bar{x} is the observed mean, μ is the historical mean, σ is the standard deviation and n is the number of observations. $\mathcal{N}(0,1)$ is the normal distribution with a mean of O and a standard deviation of 1 . Do supplements make you faster?

The effect of a food supplements on the response time in rats is of interest to a biologist. They have established that the normal response time of rat is $\mu=1.2$ seconds. The $n=1100$ rats were given a new food sup-
plements. The following summary statistics were recorded fomm the dat plements. The following summary
$\bar{x}=1.05$ and $\sigma=0.5$ seconds

1. The rats in the study are the same as normal rats. $H_{0}: \mu=1.2$.
1.2
2. The
3. The rats are different. $H_{\alpha}: \mu \neq 1.2$

4. Reject the Null hypothesis H_{0} if $Z<-1.96$ and $Z>1.96$
5. The data suggests that rats are faster with the new food.

Proportional Data

The test statistic is given by

$$
z=\frac{\hat{p}-p_{0}}{\sqrt{\frac{p_{0} q_{0}}{n}}} \sim \mathcal{N}(0,1) .
$$

where \hat{p} is the observed proportion, p_{0} is the historical proportion, q_{0} is the complement $q_{0}=1-p_{0}$, and n is the number of observations.

t-test

paired t-test

The test statistic is given by

$$
t=\frac{\bar{x}-\bar{\mu}_{0}}{\frac{s}{\sqrt{n}}} \sim t_{\alpha, d f}
$$

where \bar{x} is the observed mean, μ_{0} is the null mean, s is the standard deviation and n is the number of observations. α is the alpha level and df is the degrees of freedom.

unpaired t-test

The test statistic is given by

$$
t=\frac{\bar{x}_{1}-\bar{x}_{2}}{s_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}} \sim t_{\alpha, d f}
$$

where $s_{p}=\sqrt{\frac{s_{x_{1}}^{2}+s_{x_{2}}^{2}}{2}}$ is the pooled sample standard deviation, \bar{x}_{1} and \bar{x}_{2} are the sample means, n_{1} and n_{2} are the sample sizes.

Selected Bibliography

1. Montgomery, D. C., \& Runger, G. C. (2010). Applied statistics and probability for engineers. John Wiley \& sons.
2. Peck, R., \& Devore, J. L. (2011). Statistics: The exploration analysis of data. Cengage Learning.
3. Larson, H. J. (1982). Introduction to probability and statistical inference. JOHN WILEY \& SONS, INC., 605 THIRD AVE., NEW YORK, NY 10158, 1982, 480
4. Walpole, R. E., Myers, R. H., Myers, S. L., \& Ye, K. (1993). Probability and statistics for engineers and scientists (Vol. 5). New York: Macmillan.
5. James, G., Witten, D., Hastie, T., \& Tibshirani, R. (2013). An introduction to statistical learning (Vol. 112, p. 18). New York: Springer book website.
6. Poldrack R. Statistical Thinking in the 21st Century 2020 website.
7. Gareth, J., et al. - An introduction to statistical learning. Vol. 112. New York: Springer, 2013.
8. Fry, H. - Hello World: How to be Human in the Age of the Machine, Doubleday, 2018
9. Alexander, R. - Telling Stories with Data 2022 website
10. Butler, J. S., Course GitHub Repository

Notation

- \bar{x} - mean of a list of numbers x_{i}
- σ - standard deviation of a list of numbers x_{i}
σ^{2} - variance of a list of numbers
- $\operatorname{Pr}(A)$ - probability of event A
- $\operatorname{Pr}(\bar{A})$ - probability of not event A
- $\operatorname{Pr}(A \mid B)$ - probability of event A given event B is known
- $\Sigma_{i}^{n} x_{i}$ - the sum of a list of number x_{i}
$n!-n$ factorial is $n \times(n-1) \times \cdots \times$
- 5 ! -5 factorial is $5 \times(5-1) \times(5-2) \times(5-3) \times(5-4)=$ $5 \times 4 \times 3 \times 2 \times 1=120$
- $\binom{n}{k}={ }^{n} C_{k}-n$ choose k equals to $\frac{n!}{k!(n-k)!}$
- $\binom{5}{3}={ }^{5} C_{3}-5$ choose 3 equals to $\frac{5!}{3!(5-3)!}=\frac{5!}{3!2!}=$ $\frac{5 \times 4 \times 3 \times 2 \times 1}{3 \times 2 \times 1 \times 2 \times 1}=10$
${ }^{n} P_{k}-n$ pick k equals to $\frac{n!}{(n-k)!}$
- ${ }^{5} P_{3}-5$ pick 3 equals to $\frac{5!}{(5-3)!}=\frac{5!}{2!}=\frac{5 \times 4 \times 3 \times 2 \times 1}{2 \times 1}=60$
- p - p probability of a "win"
- $q-q$ probability of a "loss" $1-p$
- $p^{n}-p$ to the power of n is $p \times p \times \cdots \times p$
- $0.1^{4}-0.1$ to the power of 4 is $0.1 \times 0.1 \times 0.1 \times 0.1 \times 0.1$
- $E[X]$ - the expected value of a probability distribution
- $\operatorname{Var}[X]$ - the variance of a probability distribution
$e-$ is the exponential which is it equal to approximately 2.718 it is comes up again and again in mathematics formulas
- H_{0} - null hypothesis
H_{α} - alternative hypothesis
μ - real mean (generally never known)
μ_{0} - historical mean
- p_{0} - is the historical proportion
- \bar{x} - observed mean given the data
- \hat{p} - is the observed sample proportion
- $\mathcal{N}(\mu, \sigma)$ - is the Gaussian distribution with mean μ and standard deviation σ
$\mathcal{N}(0,1)$ - is a special case of Gaussian distribution known as the Normal Distribution with mean 0 and standard deviation 1
- df-degrees of freedom
- $\chi_{d f}^{2}-\operatorname{Chi}(\chi)$-squared $\left(^{2}\right)$ distribution with degrees of free-
dom df

