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NUMERICAL SOLUTIONS TO INITIAL VALUE
PROBLEMS

Differential equations have numerous applications to describe dy-
namics from physics to biology to economics.

Initial value problems are subset of Ordinary Differential Equation
(ODE’s) with the form

y =) (1)
f is a function. The general solution to (1) is
y= /f(x)dx—i—c,

containing an arbitrary constant c. In order to determine the solution
uniquely it is necessary to impose an initial condition,

y(x0) = Yo. (2)

The more general Ordinary Differential Equation is of the form

y = f(x,y), )



NUMERICAL SOLUTIONS TO INITIAL VALUE PROBLEMS

is approached in a similar fashion.
Let us consider

y = a(x)y(x) +b(x),

The given functions a(x) and b(x) are assumed continuous for this
equation

f(x,2) = a(x)z(x) +b(x),

and the general solution can be found using the method of integrating
factors.

For a great number of Initial Value Problems there is no known
exact (analytic) solution as the equations are non-linear, for exam-
pley = e"", or discontinuous or stochastic. There for a numerical
method is used to approximate the solution.



1.1 Numerical approximation of Differentiation

1.1 NUMERICAL APPROXIMATION OF DIFFERENTIATION

1.1.1  Derivation of Forward Euler for one step

The left hand side of a initial value problem % can be approximated

by Taylors theorem expand about a point xq giving;:

f(x1) = f(x0) + (x1 — x0)f (x0) + 7, (6)
where T is the truncation error,
_ 2,
G )

Rearranging and letting 1 = x1 — xg the equation becomes

£ () = L) gy,

The forward Euler method can also be derived using a variation on
the Lagrange interpolation formula called the divided difference.
Any function f(x) can be approximated by a polynomial of degree
P,(x) and an error term,

f(x) = Py(x)+error,
= f(xo) + flxo, x1](x — x0) + f[x0, x1, %2] (x — x0) (x — x1),
+... + flxo, .., xn]Hfz_Ol(x — x;) + error,

where
_ flx1) = f(x)
f[x()/ X1] = ﬁ’
— f[xlr xz] —f[xo, xl]
f[xOI X1, X2] = Yy — %o ,
flxo, x1, .., Xn] = flx1, x2, ..., xn] — flxo0, xl,...,xn_l],

Xn — X0

Differentiating P, (x)

P, (x) = f[xo, x1] + f[x0, x1, x2){ (x — x0) 4+ (x — x1)},
oy B Gt

i=0 (x - xi)

7

and the error becomes

1)

error = (x — xp)...(x — xn)m.



1.1 Numerical approximation of Differentiation

Applying this to define our first derivative, we have

f(x) = flxo, 1] = M,

X1 — X0

this leads us other formulas for computing the derivatives

fx) = f—(x;z :isxo) +O(h), Euler,

fx) = f(xz :J;ic—l) +O(h?), Central.

Using the same method we can get out computational estimates for
the 2nd derivative

f(xo) = 222N zhf;l h o),

f (x0) = % +O(h?), central.

1.1.1.1  Simple example ODE y' = sin(x)

10



1.1 Numerical approximation of Differentiation 11

# Numerical solution of a Cosine differential
equation

import numpy as np

import math

import matplotlib.pyplot as plt

h=o0.01
a=o0
b=10

=int (b—a/h)

=np . zeros (N)
x=np . zeros (N)
Analytic_Solution=np. zeros (N)

# Initial Conditions

Analytic_Solution[o]=1.0

for i in range (1,N):
w[i]=w[i—1]+h*math.sin (x[i—1])
x[i]=x[i—1]+h
Analytic_Solution[i]=2.0 —math.cos(x[i])

fig = plt.figure(figsize=(8,4))

# —— left hand plot

ax = fig.add_subplot(1,3,1)
plt.plot(x,w, color="red ")
#ax.legend (loc="best ’)

plt. title ("Numerical Solution”)




1.1 Numerical approximation of Differentiation

# —— right hand plot

ax = fig.add_subplot(1,3,2)

plt.plot(x, Analytic_Solution , color="blue ")
plt.title (" Analytic Solution’)

#ax.legend (loc="best )

ax = fig.add_subplot(1,3,3)

plt.plot(x, Analytic_Solution—w, color="blue ")
plt. title ("Error”)

# —— title , explanatory text and save

fig .suptitle (’Sine Solution’, fontsize=20)
plt.tight_layout ()
plt.subplots_adjust(top=0.85)

Sine Solution

Numerical Solution Analytic Solution Error
30 T T T T 30 T YFI T T 0.006 T T T T
0.004
25+
0.002
20+ {1 oooo
-0.002
15|
-0.004
05 T L 10 L L _0.006 L L
0 2 4 B B 0 2 4 & B 10 0 2 4 6 B 1

Figure 1.1.1: Python output: Numerical (left), Analytic (middle) and
error(right) for y' = sin(x) Equation [l with h=0.01

1.1.1.2  Simple example problem population growth y = ey.

12



1.1 Numerical approximation of Differentiation 13

# Numerical solution of a differential equation

import numpy as np
import math
import matplotlib.pyplot as plt

=np . zeros (N)
x=np . zeros (N)
Analytic_Solution=np. zeros (N)

Numerical_Solution[o]=1

for i in range (1,N):
wli]=w[i—1]+dx*(tau)s*sw[i—1]
x[i]=x[i—1]+dx
Analytic_Solution [i]=math.exp (tauxx[i])

fig = plt.figure(figsize=(8,4))
# —— left hand plot

ax = fig.add_subplot(1,3,1)
plt.plot(x,w, color="red ")




1.1 Numerical approximation of Differentiation

#ax.legend (loc="best ")
plt. title ('Numerical Solution”)

# —— right hand plot

ax = fig.add_subplot(1,3,2)

plt.plot(x, Analytic_Solution , color="blue ")
plt.title (" Analytic Solution’)

#ax.legend (loc="best )
ax = fig.add_subplot(1,3,3)
plt.plot(x, Analytic_Solution—Numerical_Solution,

color="blue ")
plt. title ("Error”)

# —— title , explanatory text and save

fig .suptitle ("Exponential Growth Solution’,
fontsize =20)

plt.tight_layout ()

plt.subplots_adjust(top=0.85)

Exponential Growth Solution
Numerical Solution 150 Analytic Solution 20 Error

Figure 1.1.2: Python output: Numerical (left), Analytic (middle) and
error(right) for y = ey Eanlwith h=0.01 and ¢ = 0.5

1.1.1.3 Example of exponential growth with a wiggle




1.1 Numerical approximation of Differentiation

Figure illustrates the numerical solution of the
differential equation.

Exponential Growth Solution with a wiggle

Numerical Solution

400
350

300 |
.f‘r-r
50|
.ff/
200 | /
/

150 | /

100 | /

50 | -

o —

o 2 4 3 8 10

Figure 1.1.3: Python output: Numerical solution for y' = e(y +
ysin(x)) Equation o] with h=0.01 and ¢ = 0.5

1.1.2  Theorems about Ordinary Differential Equations

Definition A function f(t,y) is said to satisfy a Lipschitz Condition
in the variable y on the set D C R? if a constant L > 0 exist with the
property that

[f(Ey1) = f(Ey2)] < Lly1 —yal,

whenever (t,y1), (t,y2) € D. The constant L is call the Lipschitz Con-
dition of f.

Definition A set D C R?is said to be convex if whenever (t1,y1), (t2, y2)

belong to D the point ((1 — A)t; + Aty, (1 — A)y; + Ayz) also belongs
in D for each A € [0,1].

Theorem 1.1.1. Suppose f(t,y) is defined on a convex set D C R?. Ifa
constant L > 0 exists with

avy |~
then f satisfies a Lipschitz Condition an D in the variable y with Lipschitz
constant L.

Theorem 1.1.2. Suppose that D = {(t,y)|a <t < b, —o0 < y < oo}, and
f(t,y) is continuous on D in the variable y then the initial value problem
has a unique solution y(t) fora <t <b.

Definition The initial-value problem
dy
i f(ty), a<t<p,

with initial condition

y(a) = a,

15



1.1 Numerical approximation of Differentiation 16

is said to be well posed if:
e A unique solution y(t) to the problem exists;

e For any ¢ > 0 there exists a positive constant k(¢) with the prop-
erty that whenever |ey| < € and with |[6(f)]e on [a,b] a unique
solution z(t) to the problem

% =f(t,z)+6(t), a<t<b, (10)

z(a) = a + €,
exists with
|2(8) —y()| < k(e)e.
The problem specified by is called a perturbed problem

associated with the original problem.

It assumes the possibility of an error d(¢) being introduced to the
statement of the differential equation as well as an error ¢y being
present in the initial condition.

Theorem 1.1.3. Suppose D = {(t,y)la < t < b,—c0 < y < oo}. If
f(t,y) is continuous and satisfies a Lipschitz Condition in the variable y on
the set D, then the initial value problem

with initial condition

is well-posed.




1.2 One-Step Methods

Stable example

13 Analytic Solution

10 Yy

08 — Z
06
04
02
00

0

012 Error

010 — Iy
0.08 — epsilon
006

004
0.02

0.00

0 2 4 3 8 10

Figure 1.1.4: Python output: Illustrating Stability y'(x) =
—y(x) + 1 with the initial condition y(0) = 1 and z'(x) =
—z(x) 4+ 1 with the initial condition z(0) =1 +¢, ¢ = 0.1

1.2 ONE-STEP METHODS

Dividing [4, b] in to N subsections such that we now have N+1 points
of equal spacing h = 5. This gives the formula t; = a + il for
i =0,1,..., N. One-Step Methods for Ordinary Differential Equation’s
only use one previous point to get the approximation for the next
point. The initial condition gives y(a = ty) = «, this gives the starting
point of our one step method. The general formula for One-step
methods is

Wiy1 = W; + h@(ti,wi,h),

where w; is the approximated solution of the Ordinary Differential
Equation at the point ¢;
w; = Yi.

1.2.1  Euler’s Method

The simplest example of a one step method is Euler. The derivative
is replaced by the Euler approximation. The Ordinary Differential
Equation

dy _
I = f(t,y),

is discretised L
% = f(tii, yi1) + T

T is the truncation error.

Example 9

Consider the Initial Value Problem

=2
1+t

, a=0<t<b=0.5,

17



1.2 One-Step Methods 18

Lemma 1.2.1. For all x > 0.1 and any positive m we have

0< (14+x)" <™.

Lemma 1.2.2. If s and t are positive real numbers {a;}N , is a sequence

. —t
satisfying ag > . and a;y1 < (14 s)a; +t then,

i t t
G < elts [ 4 ) -
i+1 = 0o+ S S

Theorem 1.2.3. Suppose f is continuous and satisfies a Lipschitz Condition
with constant L on D = {(t,y)|a <t < b,—o0 < y < oo} and that a
constant M exists with the property that

v (O] < M.

Let y(t) denote the unique solution of the Initial Value Problem

!

y :f(t,y), ﬂStSb, y(u):“,



1.2 One-Step Methods

and wo, w1, ..., wn be the approx generated by the Euler method for some
positive integer N. Then for i =0,1,..., N

Mh .
ly(t:) —w;| < i\ew’ )11,

Proof. When i = 0 the result is clearly true since y(tp) = wy = a.

From Taylor we have,

2
(ki) = () + Rf(t y(0) + oy (&),

where x; > ¢; > x;11, and from this we get the Euler approximation
Wiy = wi + hf(t;, w;).

Consequently we have

i) — i = y(8) 0+ Wt y(8)) — £t )] + o @),

and

2
ly(tiv1) —wipa| < |y(t:) —wil +h|f(t,y(t) — f(t,wi)| + hzfy”(é'i)!-

Since f satisfies a Lipschitz Condition in the second variable with
constant L and |y’ | < M we have

h2
ly(tiv1) —wip] < (14 hL)|y(t:) — wi| + 5 M.

Using Lemma and and letting a; = (y; — w;) for each j =
0,..,N whiles = hL and t = hZTM we see that

- RPM., KM
[yt = wia] < CV(y(to) —wol + ) — S

Since wyp —yo =0 and (i + 1)h = tj 41 — to = ti}1 — a we have

Mh .,
ly(t:) —w;| < i\ewl 9 -1,

foreachi=0,1,.N — 1. O

Example 10

y=y—£2+1, 0<t<2, y(0)=05

the Euler approximation is

w11 = w; + h(w; — t2 4+1)

19



1.2 One-Step Methods 20

Upper Bound

Numerical Solution
T T T

Analytic Solution
T

-.\nm
R '

Euler method is a typical one step method, in general such methods
are given by function ®(t, y; ; f). Our initial condition is wy = yo, for
i=0,1,.

Wiy = wi +h®(t;,w;: h: f)
with ti+1 = ti + h.
In the Euler case ®(t,y;h; f) = f(t,y) and is of order 1.

Theorem [1.2.3] can be extend to higher order one step methods with

the variation M
N il < L(ti—a)
|y(t1) wll — ZL |e

—1
where p is the order of the method.
Definition The difference method wy = «

Wiy = wi + h®(t;, w;),



1.2 One-Step Methods

fori =0,1,.., N — 1 has a local truncation error given by

i+1 — (yi + h®(t;, i
Ti+1(h) — Yi+1 (]/ - ( y))’

_ W —®(t,y1),

for each i = 0,.., N — 1 where as usual y; = y(t;) denotes the exact
solution at ¢;.

For Euler method the local truncation error at the ith step for the
problem

/

y =f(ty), a<t<b y(a)=ua
is o

i (h) = P £t ),
fori=0,.,N—1.
But we know Euler has

h "
Tit1 = iy (Ci), Ci€ (titizr),

When " (t) is known to be bounded by a constant M on [a,b] this
implies
h
tica ()] < M~ O(h).

O(h) indicates a linear order of error. The higher the order the more
accurate the method.

21



1.3 Problem Sheet

1.3 PROBLEM SHEET

1. Show that the following functions satisfy the Lipschitz condi-
tion on y on the indicated set D:

a) f(ty) =ty’, D={(ty);,-1<t<1,0<y <10}
2.2
b) f(ty) = 1%, D={(ty);0<t—-10 <y < 10}.

2. Apply Euler’s Method to approximate the solution of the given
initial value problems using the indicated number of time steps.
Compare the approximate solution with the given exact solu-
tion, and compate the actual error with the theoretical error

Ay =t-y (0<t<4)
with the initial condition y(0) =1,
N=4,y(t)=2e"+t-1,

The Lipschitz constant is determined on D = {(t,y);0 <
t<4,ye R}

b)Yy =y—t (0<t<2)
with the initial condition y(0) = 2,
N=4,y(t)=e+t+1.

The Lipschitz constant is determined on D = {(t,y);0 <
t<2,yeR}

22



HIGHER ORDER METHODS

2.1 HIGHER ORDER TAYLOR METHODS

The Taylor expansion

Vitia) = () () + S 1)+

can be used to design more accurate higher order methods. By dif-
ferentiating the original Ordinary Differential Equation y' = f(t,v)
higher ordered can be derived method it requires the function to be
continuous and differentiable.

In the general case of Taylor of order n:

Wy =«

Wiy = w; +hT"(t,w;), for i =0,..,N—1,

where

n—

1
T"(t;, w;) = f(ti, w;) + gf’(fi, w;) + ---hn—f"_l(fi, w;).  (11)

23



2.1 Higher order Taylor Methods 24

In general if y € C"[a, b]

a(h) = G @ (@) OO,

The issue is that for every differential equation a new method has be
to derived.



RUNGE-KUTTA METHOD

The Runge-Kutta method (RK) method is closely related to the Taylor
series expansions but no differentiation of f is necessary.
All RK methods will be written in the form

Wy1 = wy + hE(t,w,h; f), n>0. (12)
The truncation error for is defined by

Ta(y) = y(tur1) —y(tn) — hF(tn, y(tn), b f)

where the error is written as T, (y)

Tw = htu(y).

Rearranging we get

Y(tar1) = y(tn) = hE(tw, y () 15 f) + hTu(y)-

Theorem 3.0.1. Suppose f(t,y) and all its partial derivatives of order less
than or equal to n+1 are continuous on D = {(t,y)|a < t < b,c <y <d}
and let (to,y0) € D for every (t,y) € D, 3 & € (t,to) and u € (y,yo)
with

f(ty) = Pu(t,y) + Ru(t,y)

where

Pi(ty) = f(t0,y0)+[(t—to)aaj;(to,yo)+(y—yo)gj;(to,yo)]

_ 232 2
+[(t ;0) gt{(to,yo) + (¥ —yo)(t — )aaygt(to,yo)

2 2
n (v 2yo) ay& ,yo)]
ot
[,,},JZ(:)( ) (t—t0)"7 (y — yo)/ ay]a;j,: ](o,yo)]

25



3.1 Derivation of Second Order Runge Kutta

and
Rn(ty) =

1 n+1 1 ) n+1
(") e i) s @

(n+1)!§) j

3.1 DERIVATION OF SECOND ORDER RUNGE KUTTA

Consider the explicit one-step method

w = F(fl ti/ wi/h) (13)

with
F(f.t,y,h) = acky + aiks, (14)
F(f.t,y,h) = aof (t,y) + a1 f(t + a1,y + p1), (15)

where ag 4+ a1 = 1.
There is a free parameter in the derivation of the Runge Kutta
method for this reason gy must be choosen

Deriving the second order Runge-Kutta method by using Theorem
to determine values for values a1, a1 and B; with the property
that a1 f (t + a1,y + B1) approximates the second order Taylor

Flty) + 2f (1)

with error no greater than than O(h?), the local truncation error for
the Taylor method of order two.
Using
of of
Flby) =500+ 5

the second order Taylor can be re-written as

Ft )+ 55 00+ 550 (191 y). (16)

ty)y (1),

Expanding a; f(t + a1,y + B1) in its Taylor polynomial of degree one
about (t,y) gives

arf(t+ay,y+p1) = arf(ty) + a1y 5
(17)
where

82 2 2
Fen+apalen+8%en,

W29
Ri(t+ w1,y + 1) = ?1

26

af(f y) +ﬂ1ﬁ1§ +a1Ry(t+ a1,y + B1)



3.1 Derivation of Second Order Runge Kutta

forsome ¢ € [t,t +a1] and p € [y, y + B1].
Matching the coefficients and its derivatives in eqns and
gives the equations

flty):ar=1

)
a—{(t,y) fme = =

and

gjyc(fry) tafr = gf(t,y).

3.1.1 Runge Kutta second order: Midpoint method

Choosing a9 = 0 gives the unique values a1 = 1, a1 = % and 1 =

3f(t,y) so

T2(,y) = f(E+ 0y 2 f ()~ Ra(t+ 2y + 2 f (1)
and from

2 92 f 2 92 f

27

R1(t+§,y+gf(t,y)> = 5o M+ T, V>+h 8(ty) *J:(C %

for some ¢ € [t,t+ ] and p € [y, y + Lf(ty)].
If all the second-order partial derivatives are bounded then

R+ 5,y + 5 f(6y)) ~ ()
The Midpoint second order Runge-Kutta for the initial value problem
v =fty)
with the initial condition y(tp) = & is given by
wo = &,
wiy1 = w; +hf(t + %,yi + gf(ti/ wi)),

with an error of order O(h?). The Figure illustrates the solution
to the y = —xy



3.1 Derivation of Second Order Runge Kutta 28

ODE Solution
10 Numerical Solution Euler 10 Numerical Solution Midpoint Method
08 1 08}
06 | \ 1 06l \\
04 \ 04 \
0.2 \E Y
0.0 - 02 \
-0.2 i i i i 0.0 i
0 2 4 3 8 10 0 2 4 3 8 10
10 . Anallyt|c SO|I.I,ItICln . 002 . . Error . .
08 0.01 {1 | — Euler
1 oo p—4—= i
06 | 1 —oo1 ]| — Midpoint
-0.02
0.4 -0.03
-0.04
02 -0.05
0.0 -0.06
0 i 4 3 ] 10 0 ] 4 [ 8 10

Figure 3.1.1: Python output: Illustrating upper bound y' = —xy with
the initial condition y(0) =1

foreachi=0,1,..N — 1.

3.1.2 2nd Order Runge Kutta ag = 0.5: Heun’s method

Choosing a9 = 0.5 gives the unique values a; = 0.5, ;1 = h and
B1 = hf(t,y) such that

T*(t,y) = F(t,y) = 05f(t,y) +0.5f (t+h,y+hf(t,y)) — Ri(t+hy+hf(ty))
and the error value from

2 2 2
Ritt+hy+hs ) = 5 5L @+l @+ B S L,

forsome ¢ € [t,t+h|and p € [y, y + hf(ty)].

Thus Heun’s second order Runge-Kutta for the initial value prob-
lem

y' =f(ty)

with the initial condition y(tp) = « is given by
wy = a,

wisn = i 5[ w0) + £t + i+ g )]

with an error of order O(h?).
For ease of calculation this can be rewritten as:

kl - f(ti/wi)/
ko = f(t; + h,w; + hky),

h
Wiy = Wi + E[kl + ka.
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3.2 THIRD ORDER RUNGE KUTTA METHODS

Higher order methods are derived in a similar fashion. For the Third
Order Runge Kutta methods

Wis — W
% = F(f/ ti/ wi/h)/ (18)
with
EF(f,t,w, h) = aoky + a1k + azks, (19)
where
ap+ay+a =1
and

ki = f(ti, w;),
ko = f(ti + arh, t; + B1ak),
ks = f(ti + ash, t; + Bork1 + Paok2)).

The values of ag, a1, a2, a1, a2, B11,B21, P22 are derived by group the
Taylor expansion,

h?
yisr = Yi+thf(tiyi) + 5 (fi+ fyf)
J7E:
+€ (fit + 2fef + fefy +fyyf2 +fyfyf)(ti,y,»)
+O(h*),
with the 3rd order expand form:

Yiy1 = Yi +hayf(t, y;) + hax(f + aahfe + Buhfy f

2
+% (fut} + fyyBi1f? + 2fwyarfrnf) + O2(H%))
+has (f + IXtht + fy (,lehf + ﬁzzh(f + txlhﬁ + ,Bllhfyf + Og(hz)))

+%(ftt(“2h)2 + fuy? (Barf + B2 (f + aahfy + Prahfyf + Os(h?)))?
Os(h)

+2fiytah? (B f + B2 (f + wrlifi + Buhfyf + Oa(1?))))).
Os(h)

This results in 8 equations with 8 unknowns, but only 6 of these equa-
tions are independent. For this reason the are two free parameters to
choose.

For example, we can choose that

1

a =1,B11 = >



3.3 Runge Kutta fourth order

then we obtain the following difference equation.

h
Wit1 = W; + g(kl + 4k2 + k3):
where
ki = f(t;, wi),
ky = f(tn +1/2h,w, +1/2hky),
ks = f(tn + h,w, — hky + 2hky).

3.3 RUNGE KUTTA FOURTH ORDER

Wy = «,

ki = hf(t;, w;),

h 1
ky = I’lf(ti + E, w; + Ekl),

h 1
k3 = hf(tl + E/ wi + EkZ)/

ky = hf(ti, wi +ks),

1
Wiyl = Wi + g(k1 +2ky + 2k3 + ky).

30



3.4 Butcher Tableau 31

ODE Solution

Numerical Solution Euler 10 Numerical Solution Midpoint Method
T T T T T T T T

08
06
04
02
00
0

4 B 8
Analytic Solution

Euler Error

=

L= I e s e
[ R ———

3.4 BUTCHER TABLEAU

Another way of representing a Runge Kutta method is called the
Butcher tableau named after John C Butcher (31 March 1933).



3.4 Butcher Tableau

s
Yit1 = VYi +h Z ankn/

n=1

where

ki = f(ti,vi),
ko = f(ti + azh,yi + h(Baikr)),
ks = f(ti + azh, y; + h(Baik1 + Ba2k2)),

ks = f(ti + ash, yi + h(Bsiky + Bsoko + -+ - + Bss—1ks—1)).

These data are usually arranged in a mnemonic device, known as
a Butcher tableau

0
ay | B

a3 | P31 Pa1

Xs ,le ,552 ce ,Bssfl

a1 a - as—1 Qs

The method is consistent if
s—1
Z ﬁS] — “5.
j

3.4.1 Heun’s Method

The Butcher’s Tableau for Heun’s Method is:

0
1

N =
NI

3.4.2 4th Order Runge Kutta

The Butcher’s Tableau for the 4th Order Runge Kutta is:

—_ N=N= O

Al O O NI
AN O NI—
AN =

[N
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3.5 Convergence Analysis

3.5 CONVERGENCE ANALYSIS

In order to obtain convergence of the general Runge Kutta we need
to have the truncation 7,(y) — 0 as h — 0. Since,

o(y) = W) V) 0,9,
we require,
F(x,y, b f) =¥/ (x) = f(x,y(x)).

More precisely define,

o(h) = _ max _ |f(ty)—F(tyhf)l,

a<t<b;—oo<y<oo

and assume,
(h) -0, ash—D0. (20)

This is called the consistency condition for the RK method.
We will also need a Lipschitz Condition on F:

[F(ty,h; f) = F(tz, b f)| < |y = 2], (21)

foralla <t <band —co <y,z < oo and small i > 0.

Theorem 3.5.1. Assume that the Runge Kutta method satisfies the Lipschitz
Condition. Then for the initial value problems

y = f(xy),

y(x0) = yo.

The numerical solution {w,} satisfies

ly(xn) — wn| < (b—a)L| —wo| + w 7(h)
ulgfsxb Y(xn) —wy| < e Yo — Wo I
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3.6 The choice of method and step-size

where
7(h) = max |t,(h)],

a<x<b

If the consistency condition
5(h) = 0ash —0,

where
6(h) = max |f(x,y) — F(x,y;h; f)].

a<x<b

Proof. Subtracting
wn+1 = wﬂ + hF(tn/ ?/Un, h;f)/

and
Y(tus1) = y(tn) + hE(tw, y(tn), h; f) + BT (h),

we obtain
ent1 = ey + h[F(tn/ Wn, h/f) - F(tn/ Wy, h/f)] + th(h)/

in which e, = y(t,) — w,. Apply the Lipschitz Condition L and the
truncation error we obtain

lewn| < (14 hL)|en| + T (h).

This nicely leads to the result.

In most cases it is known by direct computation that 7(h) — 0 as
h — 0 an in that case convergence of {w, } and y(t,) is immediately
proved.

But all we need to know is that is satisfied . To see this we write

ht, = y/(tn—i-l) _zy/(/tn) - hF(tn/y(tH)/h;f)r
hy (tn) + hiy (Cn) — hE(tn, y(tn), 1 f),

W] < hé(h) + 21y,
[Tl < o(h) + 3y’
Thus t(h) - 0ash — 0 O

From this we have

Corollary 3.5.2. If the RK method has a truncation error T(h) = O(h"*1)
then the rate of convergence of {wy} to Y(t) is O(h™).

36 THE CHOICE OF METHOD AND STEP-SIZE

An interesting question is since Runge-Kutta method is 4th order but
requires 4 steps and Euler only required 3 is it more beneficial to use
a smaller h than a higher order method?

But this does lead us to the question of how do we define our h to
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3.6 The choice of method and step-size

maximize the solution we have.
An ideal difference-equation method

Wit1 = W; + h(i)(ti,wl‘,h) i= 0,..,71 -1

for approximating the solution y(t) to the Initial Value Problem y =
f(t,y) would have the property that given a tolerance ¢ > 0 the mini-
mal number of mesh points would be used to ensure that the global
error |y(t;) — w;| would not exceed ¢ for any i =0, ..., N.

We do this by finding an appropriate choice of mesh points. Although
we cannot generally determine the global error of a method there is
a close relation between local truncation and global error. By using
methods of differing order we can predict the local truncation error
and using this prediction choose a step size that will keep global er-
ror in check.

Suppose we have two techniques

1. An nth order Taylor method of the form

y(tie) = y(t) + he(ti, y(t:), hi) + O(R")
producing approximations
wo = «
Wir1 = Wi + he(t;, wi, hi)
with local truncation 7,41 = O(h").
2. An (n+1)st order Taylor of the form
y(tiv1) = y(ti) + hp(ti, y(t), i) + O(h"2)
producing approximations
Vg =

vis1 = vj + hip(ti, vi, hi)
with local truncation v; 1 = O(h"1).

We first make the assumption that w; ~ y(t;) ~ v; and choose a fixed
step size to generate w; 1 and v;;1 to approximate y(t;;1). Then

y(tip1) —y(t)

Tyl = T T ¢(ti,y(ti), h)
_ y(tiﬂh) —wi (i, wi, )
_ y(tiya) — (wi + h(ti, wi, b))
h

y(ti1) — win
h
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3.6 The choice of method and step-size

Similarly

Yip1 = ?

As a consequence

T+l = h
_ (i) = visa) 4 (vig1 — wiva)
h
= Yia(h) + (Vi1 ;le)'

but 7;,1(h) is O(h") and Y, 1(h) is O(h"T!) so the significant factor of
T;+1(h) must come from W

approximation of O(h") method,

. This gives us an easily computed

et

Tit1 =~

The object is not to estimate the local truncation error but to adjust
step size to keep it within a specified bound. To do this we assume
that since 7;11(h) is O(h") a number K independent of 1 exists with,

Ti+1 (h) ~ Khn.

Then the local truncation error produced by applying the nth order
method with a new step size gh can be estimated using the original
approximations w; 1 and v;;1

==

Ti+1(gh) = K(gh)" = q"Tti41(h) = == (viy1 — wit1),

to bound 7;11(gh) by € we choose g such that

n
%|Uz’+1 —wiy1| = Ti41(gh) <,

< ( eh >'11
1= Vi1 —wiy1|)

which can be used to control the error.

which leads to
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3.7 Problem Sheet 2

3.7 PROBLEM SHEET 2

1. Apply the Taylor method to approximate the solution of initial
value problem

Y =ty+ty?, (0<6<2), y(0) =3
using N = 4 steps.

2. Apply the Midpoint Method to approximate the solution of the
given initial value problems using the indicated number of time
steps. Compare the approximate solution with the given exact
solution

Ay =t-y (0<t<4),
with the initial condition y(0) =1,
N = 4, with the exact solution y(t) = 2e~ "+t — 1.

b)Y =y—t, (0<t<2),
with the initial condition y(0) = 2,
N = 4, with the exact solution y(t) = e’ +t + 1.

3. Apply the 4th Order Runge Kutta Method to approximate the
solution of the given initial value problems using the indicated
number of time steps. Compare the approximate solution with
the given exact solution

a)y =t—y, (0<t<4),
with the initial condition y(0) =1,
N = 4, with the exact solution y(t) = 2e~ "+t — 1.

b)Yy =y—t (0<t<2)
with the initial condition y(0) = 2,
N = 4, with the exact solution y(t) = ¢! +t + 1.

4. Derive the difference equation for the Midpoint Runge Kutta
method

wn+1:wn+k2/

kl = hf<t1’l/w1’l)/
ko = hf(t + S, + k1)
2 = f n 2/ n 21

for dolving the ordinary differential equation

dy _
It = f(ty),



3.7 Problem Sheet 2

y(to) = Yo,

by using a formula of the form
Wy i1 = Wy + aky + by,
where k; is defined as above,
ky = hf(t, + ah, w, + Pk1),

and a, b, « and B are constants are deteremined. Prove that

a+b=1and ba = b = } and choose appropriate values to

give the Midpoint Runge Kutta method.
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MULTI-STEP METHODS

Methods using the approximation at more than one previous point to
determine the approx at the next point are called multi-step methods.

Definition An m-step multi-step method for solving the Initial Value
Problem

v =f(ty) a<t<b y(a)=a

is on whose difference equation for finding the approximation w;4
at the mesh points t; 1 can be represented by the following equation,
when m is an integer greater than 1,

Wit1 = Ap—1Wi + Am—2Wj—1 + ... +A0Wit1—m

Fhlbuf (tiv1, Wis1) + b1 f (ti, i) + oo +bof(tig1—m, Wis1-m)]  (22)

fori = m—1,m,..,N —1 where h = b—&” the ag,aq,...,a, — 1 and
bo, b1, ..., by, are constants, and the starting values

Wy =&, W1 =K1, W2 ==&y, ... Wy—-1 = &y—1

are specified.
When b,, = 0 the method is called explicit or open since then
gives w;,1 explicitly in terms of previously determined approxima-
tions.

When b,, # 0 the method is called implicit or closed since w;q
occurs on both sides of (22). ¢

Example 15
Fourth order Adams-Bashforth

Wop =& W =K Wy =Ky W3 = QA3
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4.1 Derivation of a explicit multistep method

For the previous methods we need to generate a1, a; and a3 by using
a one step method.

4.1 DERIVATION OF A EXPLICIT MULTISTEP METHOD

4.1.1  General Derivation of a explicit method Adams-Bashforth

t

i) -y = [y war= [ e year

i i

Consequently

ﬂmﬂ=yw%ﬁ[mf@w0ﬂt

Since we cannot integrate f(f, y(t)) without knowing y(f) the solution
to the problem we instead integrate an interpolating poly. P(t) to
f(t,y(t)) that is determined by some of the previous obtained data
points (to, wo), (t1,w1), ..., (i, w;). When we assume in addition that
y(t) = w;

tit1
Y(tisn) ~ wi+ /t P(t)dt

We use Newton back-substitution to derive an Adams-Bashforth ex-
plicit m-step technique, we form the backward difference poly P,,_1(t)

through (t;, f(t:)), (ti-1, f(ti-1)), o (tix1—m, f(tit1-m))

— t)e(t — tis1—m)

- (23)

(D) = Pua(t) + (& y@)

40



4.1 Derivation of a explicit multistep method

P (t) = 20 Ly 1,/ () V f (i1, y(tip1 ) (24)
where

Vit y(t)) = f(t,y(t) = f(tiy(tia)),
V2f(tiy(t) = VIt y(t) = VF(tiony(tio)
= f(tiy(ti) = 2f (tia,y(tion)) + f(tia, y(ti2))-

Derivation of a explicit two-step method Adams Bashforth
To derive two step Adams-Bashforth technique

tit1

f(t,y)dt = /tti+1 f(ti,y(t) + (t;lti)Vf(ti,y(ti)) + error]dt

via—v = [Coy() + DO,y + Ervor

Yier = y(fz‘)+(ti+1—fi)f(fiz]/(fi))

tiy1 'y t-—{— t2
2 thl p V(f(t;,y(t)) + Error

= y(t:) +hf(ti,y(t))
+(ti+12;i)2(f(tiry(ti))—f(tl 1,Y(ti—1))) + Error
= y(t) +hf(ti,y(ti))
+§<f<t y(8)) — F(tia,y(t 1)) + Error

= y(ti)+§[3f(ti,y(ti)) f(tic1,y(tia)) + Error]

The two step Adams-Bashforth is wy = «¢ and w; = a1 with
h .
w1 = w; + E[Bwi —w;_q] fori=1,.,,N—-1

The local truncation error is

() = LD Qo y6)) — £, y(050))

Error

Tit+1 (h) = h

Error = /tti+1 (= ti)(t = tia) )h3f2(l/li/]/(ﬂi))]dt

i (tipr — ) (tig —tig
_ i 320, .

1 (i y (i)

Ti+1(h) = h
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4.1 Derivation of a explicit multistep method 42

The local truncation error for the two step Adams-Bashforth methods

is of order 2
T () = O(1?)

General Derivation of a explicit method Adams-Bashforth (cont.)

Definition The Lagrange polynomial L,,_1,(t) has a degree of m — 1
and is associated with the interpolation point ¢; in the sense

1 i=j
Lm—l,j(t) = { 0 175;

(t—to)o(t — ty 1) m—1 t—tk

Ly 1i(t) =
e (tj —to)o(tj — tm—1) ko#]t]

(25)

Introducing the variable t = t; + sh with dt = hds into L,,_1(t)

m_l ti +sh —

o Litsh=te __ym-1) [ =S 2
Ly—1,i(t) k:];’!# Y (—1) ( (m—1) ) (26)
/tltiﬂ f(t,y(t))dt _ j:iJrl E]r(n:—ol ( _ks ) ka(ti,y(ti))dt
+ft?+1 fm(cly(g))Wdt
£ Vs 0f () e

_|_hm' fO s(s+1)..(s+m—1)f"(g y(E))ds

The integrals (—1)* fol ( —ks )ds for various values of k are com-

puted as such,




4.1 Derivation of a explicit multistep method

N

k o1

ol (e |

N—

—|

RSlon

oW [

Table 1: Table of Adams-Bashforth coefficients

As a consequence

i

pmtl el "
+ ; s(s+1)..(s+m—1)f"(&,y(Z))ds

Since s(s +1)...(s +m — 1) does not change sign on [0,1] it can be
stated that for some p; where t;11_,, < p; < ti;1 the error term

becomes
hm—!—l 1

o ) S D (s +m = 1)f"(Ey(E))ds

PP ) [ sl 1) s+ 1)ds

Since y(tit1) —y(t) = fé’“ f(s,y(s))ds this can be written as

m!

Y(tin) = y(E) +h | F(ty(8)) + SV (6 y(0)) + = V2t (1) +
2 12

/t Ry ()t = h [f(ti,y(ti)) + %Vf (£, y(t:)) + 15—2sz (i, y(t:) + -

43

Definition If y(t) is a solution of the Initial Value Problem

v =flty), a<t<by(a) =«

and
Wit1 = Ap—1Wi + Am—2Wj—1 + .. +A0Wit1—m
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Fhlbm f(tig1, Wig1) +bu—1f(ti, wi) + oo+ bof (tir1—m Wig1—m)]

is the (i+1)th step in a multi-step method, the local truncation error
at this step is

Tir1(h) = yltivy) = am_ly(ti)h_ e = oY (tiv1-m)

—[bmf (tiv1,y(tiv1)) + bm-1f(ti, y(t:) + o+ bof (tiv1—m Y (tiv1-m))]

foreachi=m—-1,.., N —1.

4.1.2  Adams-Bashforth three step method

Wy =0 W1 — K1 W = K2

h
Wit = w; + E[Z3f(tiz w;) — 16f (ti_1, wi—1) + 5f (ti_p, wi_2)]

where i=2,3,... N-1
The local truncation error is of order 3

3
Ty (h) = §h3y4(ﬂi)
pi € (tia tiv1)
4.1.3 Adams-Bashforth four step method

wo = ®, W1 =n1, Wy =wnp, W3 =AWn3,

h
Wit1 = Wi+ oy [55f (ti, wi) —59f (ti—1, wi—1) +37f (ti—a, wi—p) — 9f (ti_3, wi—3)],
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wherei =3,..., N — 1.
The local truncation error is of order 4

251
ﬁh‘lyS(m),

Ti+1(h) = 0

Hi € (tiz, tiv1).
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4.2 DERIVATION OF THE IMPLICIT MULTI-STEP METHOD

4.2.0.1 Derivation of an implicit one-step method Adams Moulton

To derive one step Adams-Moulton technique

/t,tiﬂf(t,y)dt = /t,tiﬂ[f(fiﬂ/y(fiﬂ))+—(t _;fi+1)vf(ti+1/y(ti+1))+err0r]dt

1

Yiei—Yyi = [tf(tisny(tiaa))

t(E—t .
A G4yt ) + Error

Vier = Y(ti) 4 (tigr — ) f(tigr, y(tig))

t2+1 2 £
B2yt —
Hl 7 = 2V (f(tiv1, y(tivr))

2

+Error
= y(t) + hf(tio1,y(tisr))

—(tip1 — 1)
LTI (4 y(t00)) — (8 (1))
+Error
= y(ti) +hf(tip1,y(tiva))
=D (b y(60)) — f (3 y(8) + Error
= () + St y(t540)) + F(b 16 0))] + Ervor

The two step Adams-Moulton is wp = &g and w; = a; with

h .
Wi = w; + E[wiﬂ +w;| for i=0,.,N—1
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The local truncation error is

teal) = LN S ) + i y(0)

Error
Ti+1 (h) = h

error — [ A 2,y

1
= Py ()
113200 vl
T (h) = nh’f (,Zuy(ﬂz))

The local truncation error for the one step Adams-Moulton methods
is of order 2

T1(h) = O(1?)
DERIVATION OF THE IMPLICIT MULTI-STEP METHOD (CONT)
As before
0 i
ylt) =yt = [ (b +shyds

m—1 0
VFF (i, y(tipr) ) B(—1)F )4
T fttaytta 1) [ (5 ) a

-1

hm+1

Tiie /_01 $(5+ 1) (s + m — 1) (&, y(2))ds

The general form of the Adams-Moulton method is

Wltn) = y(0) LG (i) = 3V F (b (ti0) = 35 V2 (i) — ]
1

e /_01 $(5+1)on(s + 1 — 1) (&, y(2))ds



4.2 Derivation of the implicit multi-step method

ADAMS-MOULTON TWO STEP METHOD
Wy =0 W1 = u1

h
Wit = w; + E[5f(ti+1/wi+l) +8f(ti, wi) — f(ti1, wi—1)]

where i=2,3,... N-1
The local truncation error is

1
Tip1(h) = —ﬂh3y4(yi)
wi € (ti—1, tiv1)
ADAMS-MOULTON THREE STEP METHOD

Wy =0 W1 =01 Wy = Ky

h
Wit = Wi+ ﬂ[gf(ti—f—l/wi—f—l) +19f(t;,w;) —5f (ti—1, wi—1) + f(ti—p, wi—2)]

where i=3,... N-1
The local truncation error is

19

Tip1(h) = —ﬁoh‘lf(ﬂi)

i € (tizg, tit1)
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4.3 Table of Adam’s methods 49

This, of course can be generalised.

The only unfortunate aspect of the implicit method is that you must

convert it into an explicit method, this is not always possible. eg
/

y = ey .

4.3 TABLE OF ADAM’S METHODS

Order Formula LTE
L e =yt 2y ()

2 Yn+l =Yn + %[3fn — fu-1] %y/”(ﬂ)

3 Y1 = Yn + (230 — 1641+ 5fu_2)] 3 44) (1)
4 Yni1 = Yn + 25 155fn — 59fu1 +37fu2 —9fus] B yO)(y)

Table 2: Adams-Bashforth formulas of different order. LTE stands for
local truncation error.

Order Formula LTE

0 =it b )
1 Yn+l = Yn + %[fn+1 —|—fn] —i’—;y’”(ﬂ)

2 et = Yut 15(5fn1 +8fn = fu] ~Ly® ()
3 Yni1 = Yn+ 29 w1 +19F —5fu 1+ fua]  —2y06) ()

Table 3: Adams-Moulton formulas of different order. LTE stands for
local truncation error.
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4.4 PREDICTOR-CORRECTOR METHOD

In practice implicit methods are not used as above. They are used to
improve approximations obtained by explicit methods. The combina-
tion of the two is called predictor-corrector method.

(to, wo)]

w1)]

Improved approximations to y(t;1) can be obtained by integrating
the Adams Moulton formula

h
wif = wi+ 21 [9f (ti1, wiyq) +19f (ti, w;) = 5f (tim1, wi—1) + f(ti—z, wi2)]
wfj:ll converges to the approximation of the implicit method rather
than the solution y(#;1).
A more effective method is to reduce step-size if improved accuracy
is needed.

4.5 IMPROVED STEP-SIZE MULTI-STEP METHOD

As the predictor corrector technique produces two approximations
of each step it is a natural candidate for error-control. (see previous
section)
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q is normally chosen as

1
BTy .
' |wi+1—w?+1|

With this knowledge we can change step sizes and control out error.
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4.6 PROBLEM SHEET 3

1. Apply the 3-step Adams-Bashforth to approximate the solution
of the given initial value problems using the indicated number
of time steps. Compare the approximate solution with the given
exact solution

a)y =t—y, (0<t<4)
with the initial condition y(0) =1,
N=4,y(t)=2e"+t-1

byy' =y—t (0<t<2)
with the initial condition y(0) = 2,
N=4,yt)=e+t+1

2. Apply the 2-step Adams-Moulton Method to approximate the
solution of the given initial value problems using the indicated
number of time steps. Compare the approximate solution with
the given exact solution

a)y =t—y (0<t<4)
with the initial condition y(0) =1,
N=4,y(t)=2e"+t-1

b)y=y—t (0<t<2)
with the initial condition y(0) = 2,
N=4,yt)=e+t+1

3. Derive the difference equation for the 1-step Adams-Bashforth
method:

Wyt1 = Wy + hf (ty, wy),

with the local truncation error

T (h) = 2y (o)

where u, € (ty, ty41).
4. Derive the difference equation for the 2-step Adams-Bashforth
method:
3 1
Wyl = Wy + (Ehf(tn/ wn) - Ehf(tn—lz wn—l))/
with the local truncation error

5h2
Tup1(h) = Ef(#n)
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where yu, € (ty-1,tn11).

. Derive the difference equation for the 3-step Adams-Bashforth
method:

23 4 5

Wyt1 = Wy + (=5 hf (tn, wn) — shf(tn—1, wn—1) + = hf (fa—2, wa—2)),
12 3 12

with the local truncation error

93
Toy1(h) = ﬂf(#n)

where p, € (f—2,tn41)-
. Derive the difference equation for the o-step Adams-Moulton

method:

Wyy1 = Wy + hf(tn+1r wn+1)r
with the local truncation error

T () = — oy ()

where py, € (tp—2,ty+1)-

. Derive the difference equation for the 1-step Adams-Moulton
method:

1 1
Wp+1 = Wy + Ehf(tnﬂzwnﬂ) + Ehf(tnrwn)/
with the local truncation error

W
Tuy1(h) = 1Y (#n)

where p, € (ty, tyi1)-

. Derive the difference equation for the 2-step Adams-Moulton
method:

5 8 1
Wyp41 = Wy + ﬁhf(tn-i-l/ wn+1) + Ehf(tn/ wn) - ﬁhf(tn—lr wn—l)/

with the local truncation error

K3 4
Tur1(h) = —ﬁy (#n)

where py, € (ty—1,tn+1)-

. Derive the difference equation for the 3-step Adams-Moulton
method:

Wy4+1 = Wy +

9 19 5 1
ﬂhf(trﬂrlr wn+1) + ﬂhf(tnr wn) - ﬁhfanfl/ wnfl) + ﬂhf(tn—Zz wﬂ—Z)/
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with the local truncation error

h* 5
Tur1(h) = —ﬁoy (P‘n)

where y, € (ty—2,ty11).



CONSISTENCY, CONVERGENCE AND STABILITY

5.1 ONE STEP METHODS

Stability is why some methods give satisfactory results and some do
not.

Definition A one-step method with local truncation error 7;(h) at
the ith step is said to be consistent with the differential equation it
approximates if

lim( max |t;(h)|) =0

tim ( max |7 (h)])
where

() = ST F(ti, i, f)

As h — 0 does F(t;,yi, h, f) — f(t,y).

Definition A one step method difference equation is said to be con-
vergent with respect to the differential equation and w;, the approxi-
mation obtained from the difference method at the ith step.

ti) —w;| =0
Ty Ty )

For Euler’s method we have

R D < - (b—a) _
1r£1ii>1<\j|wl y(t)] T e 1]

so Euler’s method is convergent wrt to a differential equation.

Theorem 5.1.1. Suppose the initial value problem

!

y=f(ty) a<t<b yla) =«
is approximated by a one step difference method in the form

Wy =«
Wit = w; + I’lF(tZ‘, w; : I’l)
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Suppose also that a number hy > 0 exists and that F(t;, w; : h) is continuous
and satisfies a Lipschitz Condition in the variable w with Lipschitz constant
L on the set

D={(t,wh)la<t<b—-co<w<oo,0<h<hy}
Then
1. The method is stable;
2. The difference method is convergent if and only if it is consistent - that
is iff
F(tj,w;:0) = f(t,y) foralla <t <b

3. If a function T exists and for each i = 1,2,.., N, the local truncation
error T;(h) satisfies |T;(h)| < t(h) whenever 0 < h < hy, then

T(h _
y(t) — ) < "ol
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5.2 MULTI-STEP METHODS

The general multi-step method for approximating the solution to the
Initial Value Problem

v =f(ty) a<t<b y)=a
can be written in the form
Wop =& W1 —=0A1 .. Wy—1 =01

Wit1 = Ay 1W; + Ay 2W; 1+ oo +A0Wi 1+ HE (b, 1, Wit 1, oy Wi 1-m),



5.2 Multi-step methods

foreachi =m —1,..., N — 1 where ag, a4, .., a,,_1 are constants.
The local truncation error for a multi-step method expressed in this
form is

T (h) = y(tiv1) — am—1y(t) — amzy(til) + .. —agy(tiy1-m)

+E(ti, by (tiva), - y(tiviom))

foreachi=m—1,..,N — 1.

Definition A multi-step method is consistent if both

lim |7j(h)| =0 foralli=m,..,N
h—0
lim |a; —y(t;)] =0 foralli=0,.,m—1
h—0

Definition A multi-step method is convergent if the solution to the
difference equation approaches the solution of the differential equa-
tion as the step size approaches zero.

}llg(l) |w; —y(t;)| =0

Theorem 5.2.1. Suppose the Initial Value Problem

y=f(ty) a<t<by(a) =«

is approximated by an Adams predictor-corrector method with an m-step
Adams-Bashforth predictor equation

Wiyt = Wi + hby_1f(t;, wi) + ... + bo f (tig1—m) Wit1—m)]

with local truncation error 7,41 (h) and an (m-1)-step Adams-Moulton equa-
tion

Wit1 = Wi + h[bm_1f (tis1, Wis1) + o + Do f (Fiso—m, Wiso—m)]

with local truncation error T 1(h). In addition suppose that f(t,y) and
fy(t,y) are continuous on = {(t,y)|a <t < b, —c0 <y < co} and that
fy is bounded. Then the local truncation error o;1(h) of the predictor-
corrector method is

. A 0
oiy1(h) = tipa(h) + hTiJrl(h)bm—lajyf(tiJrl/GHl)

where 0;1 € [0, hTi1(h).
Moreover, there exists constants ki and ko such that

_ul(t _y(ts ko (ti—a)
jwi —y(t)| < Ogrjr;izx—l [wj —y(tj)| + ko (h) | e :
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where o(h) = max,,<j<n |o;(h)]|.
Definition Associated with the difference equation
Wop =& W1 =01 . Wy—1 =01

Wil = A1 W; + Ay 2Wi—1 + . + AW 1—m +hF (ti, 1, Wit1, oy Wit1—m),

is the characteristic equation given by
A g AT g A2 gy =0

Definition Let A4, ..., A, denote the roots of the that characteristic
equation
AT — am,l)&m_l — ﬂm_Q)\m_z — .. —4g = 0

associated with the multi-step difference method
Wop =0 W1 =01 .. Wy—1=~0y—1

Wil = A 1W; + Ay 2Wi 1 + o + QWi 11—y +IF (ti, h, Wiy 1, oo, Wi 1),

If [A;] <1 for each i =1,...,m and all roots with absolute value 1 are
simple roots then the difference equation is said to satisfy the root
condition.

Definition 1. Methods that satisfy the root condition and have
A = 1 as the only root of the characteristic equation of mag-
nitude one are called strongly stable;

2. Methods that satisfy the root condition and have more than one
distinct root with magnitude one are called weakly stable;

3. Methods that do not satisfy the root condition are called unsta-
ble.

Theorem 5.2.2. A multi-step method of the form
Wo =& W =&y ... Wy—1 =&y

Wiy1] = Ay 1W; + Ay 2Wi—1 + oo + AWy 1y + K (t;, B, Wi, ey Wig1—m)

is stable iff it satisfies the root condition. Moreover if the difference method
is consistent with the differential equation then the method is stable iff it is
convergent.

Example 25

We have seen that the fourth order Adams-Bashforth
method can be expressed as

Wit1 = A 1W; + Ay 2Wi—_1 + .. + AW 1 —y +HF (b, b, Wiy 1, Wi, wi_3)
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5.2 Multi-step methods

Stability i = 0.5y, y(0) =1

. Weakly Stable o Not Stable g 10 Not Stable
15
ool N | 02
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30 06
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" 12
: 05 -1
O 53 o1 s 0F 10 “hi ez o7 o5 9s 10 ~'iloow 00w 0001 00w 0vE 000

Figure 5.2.1: Python output: Left: Weakly stable solution, middle:
unstable, right: very unstable

012
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PROBLEM SHEET 4

. Determine whether the 2-step Adams-Bashforth Method is con-

sistent, stable and convergent

3 1
Wy+1 = Wy + (Ehf(tn/ wn) - Ehf(tn—lr wn—l))/

. Determine whether the 2-step Adams-Moulton Method is con-

sistent, stable and convergent

8 1
hf(tn/ wn) - Ehf(tn—lr wn—l)/

5
Wyl = Wy + ﬁhf(tn-HI Whi1) + IR

. Determine whether the linear multistep following methods are

consistent, stable and convergent

a)
1
Wy41 = Wp—1 + gh[f(tn—i-l/ wn—l—l) +4f(tn/ wn) +f(tn—1/ wn—l)]~

b)
1 2

4
Wnt1 = 3Wn = 3Wn-1 + gh[f(tnﬂrwnﬂ)]-



5.4 Initial Value Problem Review Questions

5.4 INITIAL VALUE PROBLEM REVIEW QUESTIONS

1. a)

b)

<)

Derive the Euler approximation show it has a local trunca-
tion error of O(h) of the Ordinary Differential Equation

!

y (x) = f(x,y)

with initial condition

y(a) = a.

[8 marks]

Suppose f is a continuous and satisfies a Lipschitz condi-
tion with constant Lon D = {(t,y)|la <t < b,—oc0o <y <
co} and that a constant M exists with the property that

y' (D] <M.

Let y(t) denote the unique solution of the IVP

y =fty) a<t<b yla)=a

and wy, w1, ..., wn be the approx generated by the Euler
method for some positive integer N. Then show for i =
0,1,.,N

Mh, [,
y(ts) — wi] < 5l —1]

You may assume the two lemmas:
If s and t are positive real numbers {a;}Y ; is a sequence
satisfying ag > %t and a;,1 < (1+s)a; + t then

t

; t
aipq < elH1s (ﬂo + ) — -
S S

For all x > 0.1 and any positive m we have
0<(14x)" <™

[17 marks]

Use Euler’s method to estimate the solution of

y =1-x)P—y y0)=1

at x=1, using h = 0.25.
[8 marks]
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a) Derive the difference equation for the Midpoint Runge Kutta
method

Wyl = Wy + k2
kl - hf(tn, w”)
1 1
kZ = hf(tn + Eh/wn + Ekl)

for dolving the ordinary differential equation

UZ = f(ty)

y(to) = vo

by using a formula of the form
Wy1 = Wy + aky + bky
where k; is defined as above,
ky = hf (t, + ah, w, + Bk1)

and a4, b, « and f are constants are deteremined. Prove that
a+b=1and ba =bp = % and choose appropriate values
to give the Midpoint Runge Kutta method.

[18 marks]

b) Show that the midpoint Runge Kutta method is stable.
[5 marks]

c) Use the Runge Kutta method to approximate the solutions
to the following initial value problem

y =1+ (t—y)? 2<t<3, y(2)=1

with 1 = 0.2 with the exact solution y(t) =t + .

[10 marks]

a) Derive the two step Adams-Bashforth method:

3 1
Wyp+1 = Wy + (Ehf(tn/ wn) - Ehf(tnfllwnfl))/

and the local truncation error

5K2
T (h) = =5y ()

[18 marks]
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b) Apply the two step Adams-Bashforth method to approxi-
mate the soluion of the initial value problem:

y=ty—y, (0<t<2) y(0)=1
. Using N = 4 steps, given that y; = 0.6872.
[15 marks]

a) Derive the Adams-Moulton two step method and its trun-
cation error which is of the form
Wy =0y W1 = K

h
Wpt1 = Wy + E[5f(tn+1/ wn+1) +8f(tnr wnl) _f(tn—Zr wn—Z)]

and the local truncation error

W,
Tay1(h) = ~52Y (#n)

[23 marks]

b) Define the terms strongly stable, weakly stable and unsta-
ble with respect to the characteristic equation.

[5 marks]

c) Show that the Adams-Bashforth two step method is stongly
stable.

[5 marks]

a) Given the initial value problem:

y' = f(ty), y(to) =yo

and a numerical method which generates a numerical so-
lution (w,)N_,, explain what it means for the method to be
convergent.

[5 marks]
b) Using the 2-step Adams-Bashforth method:

3 1
Wyt1 = Wy + Ehf(tn/wn) — §hf(tn71,wn71)

as a predictor, and the 2-step Adams-Moulton method:

h
Wyt1 = Wy + E[Sf(tn+1/wn+l) +8f (tn, wn1) — f(tn—2, Wy—2)]
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as a corrector, apply the 2-step Adams predicitor-corrector
method to approximate the solution of the initial value
problem

Y=ty -y, (0<t<2), y(0)=1

using N=4 steps, given y; = 0.5.
[18 marks]

c) Using the predictor corrector define a bound for the error
by controlling the step size.

[10 marks]

a) Given the Midpoint point (Runge- Kutta) method
wo = Yo

h h
Wiy = wi + hf (x; + 5 Wi + Ef(xiz w;))

Assume that the Runge Kutta method satisfies the Lips-
chitz condition. Then for the initial value problems

!

y =f(xy)

y(x0) = Yo

Show that the numerical solution {wy, } satisfies

~ bal e(bfa)L -1 "
max ly(x) = wa] < ey — ol + | | 7(h)
where

T(h) = Jmax 1T (y)|

If the consistency condition
o0(h) >0ash—0

where
6(h) = max |f(x,y) — F(x,y; h; f)]

a<x<b
is satisfied then the numerical solution w, converges to
Y (xp).
[18 marks]

b) Consider the differential equation

y —y+x—2=0, 0<x<1, y(0)=0.
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Apply the midpoint method to approximate the solution
at y(0.4) using h = 0.2

[11 marks]
¢) How would you improve on this result.

[4 marks]

68



Part II

NUMERICAL SOLUTIONS TO BOUNDARY
VALUE PROBLEMS



BOUNDARY VALUE PROBLEMS

6.1 SYSTEMS OF EQUATIONS

An m-th order system of equation of first order Initial Value Problem
can be expressed in the form

(30)
duy, __ '
= fu(t ur, oo U
for a <t < b with the the initial conditions
up(a) = m
ux(a) = ap
(31)
U (a) = oy

This can also be written in vector from
i

u = f(t,u)

with initial conditions
u(a) = ff.

Definition The function f(t, uy, ..., u,,) defined on the set
D= {(t,uy,.,um)la <t <b —co<u <oo,i=1,.,m}

is said to be a Lipschitz Condition on D in the variables uq, ..., uy, if
a constant L, the Lipschitz Constant, exists with the property that

m
|f(t,ur, e ttm) — f(t, 20,22, 2m) | S LY Juj — 2]
=1

for all (¢, uy, ..., uy) and (t,2z1,22, ..., 2y) in D.
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Theorem 6.1.1. Suppose
D={(t,ug, ., up)|a<t<b -0 <u <oo,i=1,.,m}

is continuous on D and satisfy a Lipschitz Condition. The system of 1st or-
der equations subject th the initial conditions, has a unique solution uy (t), uz(t), ..., um(t)
fora <t <b.

6.2 HIGHER ORDER EQUATIONS

Definition A general mth order initial value problem
Y1) = f(ty, -y ) a<t<b
with initial conditions
y(a) = al,y' (a) = aZ,...,y(m_l)(a) = a,
can be converted into a system of equations as in and

Let uq(t) = y(t),uy(t) = y'(t), ..., um(t) = y""=V(t). This produces
the first order system of equations
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duy—1 d}/(m_z) _
R
du,,

(n) _
ity — B o (8,1, YD) = F(E U, ey th)

with initial conditions

63 BOUNDARY VALUE PROBLEMS

Consider the second order differential equation

"

y =flxyy) (32)

defined on an interval 4 < x < b. Here f is a function of three vari-
ables and y is an unknown. The general solution to [32] contains two
arbitrary constants so in order to determine it uniquely it is necessary
to impose two additional conditions on y. When one of these is given
at x = a and the other at x = b the problem is called a boundary
value problem and associated conditions are called boundary condi-
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tions.
The simplest type of boundary conditions are

y(a) =«
y(b) =B

for a given numbers a and . However more general conditions such
as
My(a) + A2y (a) = my

w1y (b) + pay (b) = a2

for given numbers «;, A; and y; (i=1,2) are sometimes imposed.
Unlike Initial Value Problem whose problems are uniquely solvable
boundary value problem can have no solution or many.

While we cannot state that all boundary value problem are unique
we can say a few things.



6.4 Some theorems about boundary value problem

64 SOME THEOREMS ABOUT BOUNDARY VALUE PROBLEM

Writing the general linear subset Boundary Value Problem

y :P(x)y/+6](x)y+§(x) a<x<b
AE AN

The homogeneous problem is the case in which g(x) and y; = 2 = 0.

Theorem 6.4.1. The non-homogeneous problem has a unigue solution
y(x) on [a,b] for each set of given {g(x), y1,v2} if and only if the homoge-
neous problem has only the trivial solutions y(x) = 0.

For conditions under which the homogeneous problem has
only the zero solution we consider the following subset of problem

=p(X)y +q(x)y+g(x) a<x<b
ﬂoy(ﬂ) amy (a)=m (34)
boy () + b1y (b) = 72

Assume the following conditions

gx) >0 a<x<b

ag,a; >0 by, by >0 (35)

la1| + |ao| # 0, |b1| + |bo| # O, |ao| + |bo| # O Then the homogeneous
problem for has only the zero solution therefore the theorem is
applicable and the non-homogeneous problem has a unique solution
for each set of data {g(x), y1, 72}

The theory for a non-linear problem is far more complicated than that
of a linear problem. Looking at the class of problems

v =flxyy) a<x<b
aoy(a) — a1y (a) = (36)
boy(b) + by (b) =

The function f is assumed to satisfy the following Lipschitz Condition

|f(x,u1,01) — f(x,u2,02)| < Kq|ug — us|
|f(x,u1,01) — f(x,u2,02)| < Ka|vg — 02|

for all points in the region

(37)

R={(x,u,v)jJa<x<b —oc0<uuv<oo}
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6.5 Shooting Methods

Theorem 6.4.2. The problem @ assumes f(x,u,v) is continuous on the
region R and it satisfies the Lipschitz condition (37). In addition assume
that f, on R, satisfies

af(x,u,v) 50 ‘af(x,u,v)

<
Ju =M

Jv

for some constant M > 0 for the boundary conditions of 36| assume that
la1] + |ao] # O, |b1| + |bo| # O,lao| + |bo| # 0. The boundary value
problem has a unique solution.

6.5 SHOOTING METHODS

The principal of the shooting method is to change our original bound-
ary value problem boundary value problem into 2 Initial Value Prob-
lem.

6.5.1 Linear Shooting method

Looking at problem class (34). We break this down into two Initial
Value Problem.

1 =Py +4(x)y1+1(x), yi(a) =, yi(a) =0 8)
y2 = P)Y2 +q(X)y2, y2(a) =0, yp(a) =1

combining these results together to get the unique solution

yx) = () + B () (9)
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provided that y»(b) # 0.




6.5 Shooting Methods 77

uyp = uz, w(0)=3

T T T T =

_%/

fedagmomd @ =]
STl i

i0 : —"
n ——-—'-'ﬂ-_ 1 1 L

RN 0.2 [X] 0.6 0.8 1o %o 02 . [ 0

uhy = 2uz + 3u; — 6, wa(0) =10 wh = 2ws + 3wy, wz(l)=1

Figure 6.5.1: Python output: Shooting Method

Numerical; u; + %ﬂwl
T

Exact: y =%+ 2
T T T T

Figure 6.5.2: Python output: Shooting Method error

6.5.2  The Shooting method for non-linear equations
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Which reduces to the first order system, letting y; = y
and iy, =y
n=y2 yn(0)=0
Y2 =~21y2 ¥>(0) = A
Taking A = 1 and A = 2 as the first and second guess
of i (0). depends on two variable x and A. ¢

How to choose A?
Our goal is to choose A such that.

F(A) = y(b,A) — =0

We use Newton’s method to generate the sequence Ay with only the
initial approx Ag. The iteration has the form

A= A _y<b/Ak71)_lB
k k—1 dl(b 1 )
ax \V, -1

and requires knowledge of % (b, Ak—1). This present a difficulty since
an explicit representation for y(b, A) is unknown we only know y(b, Ag),

y(b, A1), sy (b, Ag—r).
Rewriting our Initial Value Problem we have it so that it depends on
both x and A.

y'(x,A) = f(x,y(x,A),y (x,A) a<x<b
y(a,A) =w y(a,A) = A

differentiating with respect to A and let z(x,A) denote S—K(x,/\) we

have ,
9y _ofay  oF
oA /TN T ayor T ay oA

Now )

W _ 2oy _ 3 () _d_
oA  90Adx Jx \9dA /) odx
we have

Z (x,A) = gjyfz(x,)\) + ;5, z (x,A)

for a < x < b and the boundary conditions
z(a,A) =0, z(a,A)=1

Now we have (b as) —
_ _ Y\o, A1) —
M= A z(b, Ax-1)
We can solve the original non-linear subset Boundary Value Problem
by solving the 2 Initial Value Problem’s.
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08

06

04

0.2

l].[l].

0 0.2 04 L 08 1.0

Figure 6.5.3: Python output: Nonlinear Shooting Method
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6.6 Finite Difference method

1—uni N}
wi (V]

Numerical: u; + wy

00 0.2 (K] 0.6 08 L0

Figure 6.5.4: Python output: Nonlinear Shooting Method result

g8 lambda

140 .

L35 |

130 |

125

120 |

L1 |

104 L

1.00 - H H H H
1] 1 2 3 5 [
Iterations

Figure 6.5.5: Python output: Nonlinear Shooting Method A

6.6 FINITE DIFFERENCE METHOD

Each finite difference operator can be derived from Taylor expansion.
Once again looking at a linear second order differential equation

"

y =px)y +q(x)y+r(x)

on [a,b] subject to boundary conditions

yla)=a y(b)=p
As with all cases we divide the area into even spaced mesh points

b—a
N

Xxo=a, xN=b x;=x0+ih h=
We now replace the derivatives i (x) and " (x) with the centered

difference approximations

: 1 W,
y (0) = 57 (Y(xien) = y(xim1)) = 3597 (80)

8o
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" 1 W,
y (x) = 73 (y(xin) =2y (x) +y(xio1)) — =" (i)

for some x;_1 < ¢ip; < xj4q for i=1,...N-1.

We now have the equation

(3 (xii1) — 29(x) 4y 1)) = plx0) g (i) — y(xi 1)) +a()y () + ()

This is rearranged such that we have all the unknown together,

(142850 ) i) = 2 gyt + (1 5 )y = Rt
fori=1,.,N —1.

Since the values of p(x;),q(x;) and r(x;) are known it represents a
linear algebraic equation involving y(x;_1), y(x;), y(xi+1)-

This produces a system of N — 1 linear equations with N —1 un-
knowns y(x1), ..., y(xn-_1).

The first equation corresponding to i = 1 simplifies to

—(2+h2q(x1))y(x1) + (1 - hp(2x1)> y(x) = hzr(m) - <1 + hp(2x1)> o

because of the boundary condition y(a) = «, and fori = N —1

(1+ ) y o) = @+ )yl a) = WorGo ) = (1 2R )

because y(b) = B.
The values of y;, (i = 1,.., N — 1) can therefore be found by solving
the tridiagonal system

Ay=Db
where
A=
[— (2 + K2q(x1)) (1— %) 0 . 0 ]
(1152 @ mg(r) (115 .
0 . . 0 0
0 <1 + W) —(2+h*q(xn-2)) (1 - 7@(?72))
0 0 (1 i hp(sz—l)) — (24 hq(xn_1))
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" h?ry — (1 + hzﬂ) x
Y2 hzrz
y = b =
YN-—2 Wry_»

YN-1 hWryn_1 — (1 — hzﬂ> B
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(x;) +e*

SOLVING A TRI-DIAGONAL SYSTEM

To solve a tri-diagonal system we can use the method discussed in
the approximation theory.



Part III

NUMERICAL SOLUTIONS TO PARTIAL
DIFFERENTIAL EQUATIONS



PARTIAL DIFFERENTIAL EQUATIONS

7.1 INTRODUCTION

Partial Differential Equations (PDE), occur frequently in maths, natu-
ral science and engineering.

PDE’s are problems involving rates of change of functions of several
variables.

The following involve 2 independent variables:

V2 = _‘;2;2‘ _ 32;2[ = f(x,y) Poisson Eqn
?; + vgz =0 Advection Eqn
?)Ltl — gszzl =0 Heat Eqn
aaztg — CZ?)ZxZ =0 Wave Equation

Here v, D, c are real positive constants. In these cases x,y are the
space coordinates and t, x are often viewed as time and space coordi-
nates, respectively.

These are only examples and do not cover all cases. In real occur-
rences PDE’s usually have 3 or 4 variables.

7.2 PDE CLASSIFICATION

PDE’s in two independent variables x and y have the form

ou Jou d*u
1) (x,y, u, T @, 352’ ) =0

where the symbol ® stands for some functional relationship.
As we saw with BVP this is too general a case so we must define new
classes of the general PDE.

Definition The order of a PDE is the order of the highest derivative
that appears.
ie Poisson is 2nd order, Advection eqn is 1st order. o
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7.2 PDE Classification 86

Most of the mathematical theory of PDE’s concerns linear equations
of first or second order.

After order and linearity (linear or non-linear), the most important
classification scheme for PDE’s involves geometry.

Introducing the ideas with an example:

Consider a second order PDE having the form

ou o%u o%u ou Ju
“(x/y)m + ﬁ(x/y)m + ’Y(x/y)a—yz =Y(xy,u, E @) (47)



7.2 PDE Classification

Along an arbitrary smooth curve (x(s),y(s)) in the (x,y)-plane, the

gradient (%r %) of the solution varies according to the chain rule:

dx Puay Pu_d (o
ds 9yox = ds dydx  ds \ ox

dx Pu dydPu _d (o
ds 0xdy  dsdy?>  ds \ 9y

if the solution u(x,y) is continuously differentiable then these rela-

tionships together with the original PDE yield the following system:

2
By e ¥
dx dy 85614 . 4 (ou
as  ds oxdy ds \ ox (48)
0 dx dy u d (du

ds ds ay? ds \ 9y

By analogy with the first order case we determine the characteristic
curves bu where the PDE is redundant with the chain rule. This
occurs when the determinant of the matrix in vanishes that is

when dy )\ dy\ (dx dx\?
() () (%) (%) =0

eliminating the parameter s reduces this equation to the equivalent

condition ,
dy dy _
“(mc) 5<dx)”—°

Formally solving this quadratic for %' we find

dy _ BE B —4ay

dx 2

This pair of ODE’s determine the characteristic curves. From this
equation we divide into 3 classes each defined with respect to g2 —
4uy.

1. HYPERBOLIC
p% —4ary > 0 This gives two families of real characteristic curves.

2. PARABOLIC
p% — 4ay = 0 This gives exactly one family of real characteristic
curves.

3. ELLIPTIC
p% — 4ay < 0 This gives no real characteristic equations.

Example 39
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7.2 PDE Classification

We can also state that hyperbolic and parabolic are Boundary value
problems and initial value problems. While, elliptic problems are
boundary value problems.
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7.3 Difference Operators

7.3 DIFFERENCE OPERATORS

Through out this chapter we will use U to denote the exact solution
and w to denote the numerical (approximate) solution.
1-D difference operators

Uiy — U

DTU; = 7 Forward
i+1
u, — u;_
D U; = Zhil] Backward
i
DU, = M Centered
Xit1 — Xi—1

For 2-D Differences Schemes is similar when dealing with the x-
direction we hold the y-direction constant and then dealing with the
y-direction hold the x-direction constant.

Uiy1j — Uy

D} Ujj = ———— Forward in the x-direction
Xit1 — Xi
D;r Uij = — 7Y Forward in the y-direction
yi+1*yi
_ Uij — Ui . L
Dy U;; = ——— Backward in the x direction
Xi = Xi—1
_ Uijj — Ujj . L
D, Ujj = ———— Backward in the y direction
Yi— Vi
u: c— U
DY Uij = —HU U Centered in the x direction
Xit1 — Xi—1
U —U::_
Dg Uij = —HL - Z07 Centered in the y direction
Yit1 — Vi1

Second derivatives

89

5%111-]' = ( ad L = > Centered in x direction
Xit+1 — Xi—1 Xit1 — Xi Xi — Xi-1

5;111-]- = ( g R J 1) Centered in y direction
Yit1 =VYi-1 \ Viv1 — Vi Yi—VYi



PARABOLIC EQUATIONS

We will look at the Heat equation as our sample parabolic equation.

ou U
5T _Kﬁ on ()

and
U = g(x,y) on the boundary 6Q)

this can be transformed without loss of generality by a non-dimensional
transformation to

u_ou

5 = 92 (49)

with the domain

Q={(tx)0<t0<x<1}.

8.1 EXAMPLE HEAT EQUATION

In this case we look at a rod of unit length with each end in ice.

The rod is heat insulated along its length so that temp changes occur
through heat conduction along its length and heat transfer at its ends,
where w denotes temp.

Given that the ends of the rod are kept in contact with ice and the
initial temp distribution is non dimensional form is

1. U:foorogxg%
2. U=2(1-x)forl<x<1
In other words we are seeking a numerical solution of
u_#u
ot ox2
which satisfies

1. U=0atx =0and x =1 for all t > 0 (the boundary condition)

2. U:foorogxg%fortzo
U =2(1-x)for 1 <x <1fort=0 (the initial condition).
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8.2 An explicit method for the heat eqn

Due to the initial conditions the problem is symmetric with respect
to x = 0.5. To illustrate the implementation and limitations of the
explicit, implicit and Crank-Nicholson methods we will numerically
solve the Heat Equation of the rod for three different values of r:

_ 1 _ 1 _k _ 1.
Case 1 Let h = 15 and k = {5 so that r = ;7 = g5
k

_ 1 _ 1 _ k1.
Case 2 Leth——10 alnclk——200 SO thatr—hz—z,

1 1 _ k _
Case 3 Leth = 5 and k = g5 so thatr = ;7 = 1.

8.2 AN EXPLICIT METHOD FOR THE HEAT EQN

The explicit Forwards Time Centered Space (FTCS) equation differ-
ence equation of the differential equation (49) is

Wij1 — Wij Wiyl — 2Wjj + Wj_y; (50)
- 2 ,

fivr =1

Wijt1 — Wij  Wiy1j — 2Wi5 + W y;
k B h?

when approaching this we have divided up the area into two uniform
meshes one in the x direction and the other in the f-direction. We
define t; = jk where k is the step size in the time direction.
We define x; = ih where h is the step size in the space direction.
w;j denotes the numerical approximation of U at (x;, t;).
Rearranging the equation we get

Wij+1 = TW;-1j + (1-— Zr)wi]' + TWit1j (51)

where r = h—kz
This gives the formula for the unknown term wj;,; at the (ij + 1)
mesh points in terms of all x; along the jth time row.

Hence we can calculate the unknown pivotal values of w along the
first row t =k or j = 1 in terms of the known boundary conditions.

This can be written in matrix form:
Wit = AW]‘ + bj
for which Aisan N — 1 x N — 1 matrixL

1-—-2r r 0 .
r 1-—2r r 0o .
0 r 1-2r r O
r 1-—2r r
r 1—2r
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where r = % >0, w; is
2 j

wlj
w2]'

WN-2j
WN-1j
and b; is
rwo;
0

0
rwN]-

It is assumed that the boundary values wp; and wy; are known for
j=1,2,..., and wj is the initial condition.
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8.3 An implicit (BTCS) method for the Heat Equation
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Figure 8.2.9: The colorplot of The explicit numerical solution w
of the Heat Equation for r = 1.

Considered as a solution to the Heat Equation this is
meaningless although it is the correct solution of the
difference equation with respect to the initial condi-
tions and the boundary conditions.

8.3 AN IMPLICIT (BTCS) METHOD FOR THE HEAT EQUATION

The implicit Backward Time Centered Space (BTCS) difference equa-
tion of the differential Heat equation (49) is

Wijt1 — Wij  Wiytjp1 — 2Wij41 + Wiqj41 (52)
k h?

when approaching this we have divided up the area into two uniform
meshes one in the x direction and the other in the t-direction. We
define t; = jk where k is the step size in the time direction.

We define x; = ih where h is the step size in the space direction.

w;j denotes the numerical approximation of U at (x;, t;).
Rearranging the equation we get

—rwi—1j1 + (14 2r)wij 11 — rwis1j41 = wjj (53)

where v = h—kz
This gives the formula for the unknown term w;;,; at the (ij +1)
mesh points in terms of terms along the jth time row.

Hence we can calculate the unknown pivotal values of w along the
first row t = k or j = 1 in terms of the known boundary conditions.

This can be written in matrix from

AW]‘+1 == W] + b]'+1
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8.3 An implicit (BTCS) method for the Heat Equation

for which A is

14 2r —r 0 .
—r 1+ 2r —r 0 .
0 —r 1+2r —r 0

—r 142r —r
—r 1+2r
where r = h% >0, w;is

wlj
Z{)z]‘

WN-2j
WN-1j

and b is

rwoj+1

0
TWNj+1

It is assumed that the boundary values wy; and wy; are known for
j=1,2,.., and wj is the initial condition.

8.3.1  Example implicit (BTCS) for the Heat Equation

In this case we look at a rod of unit length with each end in ice.

The rod is heat insulated along its length so that temperature changes
occur through heat conduction along its length and heat transfer at
its ends, where w denotes temperature.

Given that the ends of the rod are kept in contact with ice and the
initial temperature distribution is non dimensional form is

1. U:2xfor0§x§%
2. U=2(1-x)for; <x<1
In other words we are seeking a numerical solution of

au _Pu

ot 0x2
which satisfies
1. U=0atx =0 for all t > 0 (the boundary condition),

2. U:2xfor0§x§%f0rt:0,
U=2(1-x) for % < x <1 for t = 0 (the initial condition).
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Woj+1

Wsj+1
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8.4 Crank Nicholson Implicit method
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Figure 8.3.9: The colorplot of the implicit numerical solution w
of the Heat Equation for r = 1.

84 CRANK NICHOLSON IMPLICIT METHOD

Since the implicit method requires that k < %hz a new method was
needed which would work for all finite values of r.

They considered the partial differential equation as being satisfied at
the midpoint {ik, (j + %)k} and replace ‘(5527121 by the mean of its finite
difference approximations at the jth and (j+1)th time levels. In other
words they approximated the equation

(5),~ ()
)iy N0 /gy

by
Wijt1 — Wi 1 [ Wigaj1 — 2Wij1 + Wigj L Wiy 2wij + wi—q;
k 2 h? h?
giving
—1Wi 141+ (2 4+ 2r)Wij 11 — 1w i1 = 1w+ (2 — 2r)w;j + rw;gq;
(54)
with r = h—kz

In general the LHS contains 3 unknowns and the RHS 3 known piv-
otal values.

If there are N intervals mesh points along each row then for j = 0 and
i =1,.,N it gives N simultaneous equations for N unknown pivotal
values along the first row.

Which can be described in matrix form
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as
242r  —r 0 . . . . W1j+1
—r  242r —r 0 . . . W2j+1
0 —r 242r —r 0
—r 242r —r WN-2j+1
—r 24 2r wN_1j+1
2—2r r 0 w1j
r 2-—2r r 0 Wy
0 r 2-2r r 0 . . .
= +bj+bj1
r 2-—2r r WN-2j
r 2—-2r WN-1j

where b; and b, are vectors of known boundary conditions.

TZ()Oj TZ()Oj+1
0 0
b; = , b= (55)
0 0
FWN;j TWNj+1

8.4.1  Example Crank-Nicholson solution of the Heat Equation

In this case we look at a rod of unit length with each end in ice.

The rod is heat insulated along its length so that temperature changes
occur through heat conduction along its length and heat transfer at
its ends, where w denotes temperature.

Simple case

Given that the ends of the rod are kept in contact with ice and the
initial temperature distribution is non dimensional form is

1. U=2xfor0<x<}
2. U=2(1-x)fori<x<1
In other words we are seeking a numerical solution of

ou_u
ot  oIx?

which satisfies
1. U=0atx =0 forall t > 0 (the boundary condition)

2. U:2xforO§x§%fortzOUzZ(l—x)for%§x§1for
t = 0 (the initial condition)
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i+1,j
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8.5 The Theta Method 112

8.5 THE THETA METHOD

The Theta Method is a generalization of the Crank-Nicholson method
and expresses our partial differential equation as

Wij+1 — Wij _ {9 <wz’+1j+1 — 2Wjj41 + wi—l]’—i—l) (-8 <wi+1j — 2w;; + wi—1j> }

k W2 2
(56)

e when 6 = 0 we get the explicit scheme,
e when 0 = % we get the Crank-Nicholson scheme,
e and 6 = 1 we get fully implicit backward finite difference method.

The equations are unconditionally valid for % <0<1l.For0<O< %
we must have

1
< .
"= 00— 20)

8.6 THE GENERAL MATRIX FORM

Let the solution domain of the PDE be the finite rectangle 0 < x <1
and 0 < t < T and subdivide it into a uniform rectangular mesh by
the lines x; = ih for i = 0 to N and t; = jk for j = 0 to | it will be
assumed that £ is related to k by some relationship such as k = rh or
k = rh* with r > 0 and finite so that as 1 — 0 as k — 0.

Assume that the finite difference equation relating the mesh point
values along the (j + 1)th and jth row is

biawi—1j+1 + biwiji1 + bipaWitj11 = CimaWi-1j + CiWij + Cip1Wiy1j

where the coefficients are constant. If the boundary values at i = 0
and N for j > 0 are known these (N — 1) equations fori =1to N —1
can be written in matrix form.

bl bz 0 . . . . w1 j+1
bl b2 b3 0 . . . ijJrl
0 by b3 by O

bn-s bn-—2 bno1 WN-2j+1
bn-2 by WN-1j+1
c1 (2 0 . . . . wl]- CQZU()]' — bowonrl
C1 C2 (3 0 . . . Z(Jz]' 0
0 Cr C3 (4 0
= +
CN-3 CN-2 CN-1 WN-2j 0

CN-2 CN-1 WN-1j CNWNj — waNj+1



8.7 Derivative Boundary Conditions

Which can be written as
BW]'+1 = CW]‘ + dj

Where B and C are of order (N — 1) w; denotes a column vector and
d; denotes a column vector of boundary values.
Hence

W]'+1 = B_1CW]' + B_ld]'.

Expressed in a more conventional manner as

Where A = B~1C and f]- = Bfldj.

87 DERIVATIVE BOUNDARY CONDITIONS

Boundary conditions expressed in terms of derivatives occur frequently.

8.7.1  Example Derivative Boundary Conditions

ou
ng(U—vo) at x =0

where H is a positive constant and vy is the surrounding temperature.

How do we deal with this type of boundary condition?

1. By using forward difference for aa—lj, we have

wW1; — Wo;i
# = H(wo; — vo)
X

where hy = x1 — xg. This gives us one extra equation for the
temp w;;.

2. If we wish to represent aa—g more accurately at x=0, we use a
central difference formula. It is necessary to introduce a fic-
titious temperature w_;; at the external mesh points (—hy, jk).
The temperature w_; is unknown and needs another equation.
This is obtained by assuming that the heat conduction equation
is satisfied at the end points. The unknown w_;; can be elimi-

nated between these equations.

Solve for the equation
U _#u
ot 0x2
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8.7 Derivative Boundary Conditions

satisfying the initial condition
U=1for0<x<1whent=0

and the boundary conditions

aﬂ:Uatx:Oforallt

ox
a71’[:—l,leltleforallt.
Jx

8.7.1.1 Example 1

Using forward difference approximation for the derivative boundary
condition and the explicit method to approximate the PDE.
Our difference equation is,

Wij1 — Wij  Wig1j — 2Wi5 + Wi—y;

k h?
Wij41 = Wij + r(wi_1j — 2wj; + Witq;) (57)
where r = h%
Ati=1, is,
Wj41 = wij + 1(woj — 2wy + Wy;) (58)
The boundary condition at x = 0 is aa%l = U in terms of forward
difference this is
w1] — ZUO]' Do
hy U
rearranging
wy = (59)
A
Using and to eliminate we get,
B r
w1j+1 =(1-2r+ Thx wlj + T’YUZ]'.
Ati=N-1, (57 is,
WN-1j+1 = WN-1j + H(WN_2j — 2WN_1j + WNj) (60)
The boundary condition at x = 1 is a—g = U in terms of forward
difference this is
WNj —WN-10
rearranging
WN-1j

wNj = 1, (61
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8.7 Derivative Boundary Conditions

Using and to eliminate we get,

.
WN-1j+1 = TWN-—2j + |1 —2r+ WN-1j-
1-—hy

Choose hs = % and k = 11W such that r = %.
The equations become

Wij+1 = 5, W1j + 192

1 .
Wijy1 = Z(wi—lj + 2w;j + wiyj) i =2,3

and
1 13
Wsj1+1 = W3] + (sz;j)
In matrix form
7 1
Wijt1 5 1 0 0 wy;
T 1 1
Wy | _| 3 2 7 0 woj
= T 1 1
W3j4+1 0 i % fz?) ws;
Wyjt1 0 0 7 ¢ Wyj
with the boundaries given by
10

Woj+1 = ﬁwlj-i-l;

10
Woj+1 = §w1j+1-

8.7.1.2  Example 2

Using central difference approximation for the derivative boundary
condition and the explicit method to approximate the PDE.

Our difference equation is as in (57).

At i = 0 we have

woj+1 = Woj + 1(w_1; — 2wo; + wy;) (62)

The boundary condition at x = 0, in terms of central differences can

be written as
wlj — w_lj

2h,
Using and to eliminate the fictitious term w_;; we get,

= Wo; (63)

Woj1 = woj + 2r((—1 — hy)wo; + wy;)
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8.8 Local Truncation Error and Consistency

8.7.1.3 Example 3

Using central difference approximation for the derivative boundary
condition and the Crank-Nicholson method to approximate the PDE.
The difference equation is,

Wijr1 —wij 1 {wi+1j+1 — 2Wjj11 + Wit L Wit~ 2wjj + wj—1j }

k 2 h? h?
giving
—rWi—1j41 + (2 + 2r)wij+1 — TWit1j41 = TW;—1j + (2 - 27’)?,{)1‘]' + rWiyj
(64)
with r = %

The boundary condition at x = 0, in terms of central differences can
be written as

wlj — w_1] - ‘
on, U
Rearranging we have
w_1j = wyj — 2hyw; (65)
and
w,1j+1 = wl]-ﬂ — ZthO]-H (66)

Let j = 0 and i = 0 the difference equation becomes
—rw_11 + (24 2r)we — rwiy = rw_19 + (2 —2r)weo + rwig  (67)

Using, , and @ we can eliminate the fictious terms w_,; and
W—_1j+1-

8.8 LOCAL TRUNCATION ERROR AND CONSISTENCY

Let F;j(w) represent the difference equation approximating the PDE
at the ijth point with exact solution w.

If w is replaced by U at the mesh points of the difference equation
where U is the exact solution of the PDE the value of F;(U) is the
local truncation error Tj; in at the ij mesh pont.

Using Taylor expansions it is easy to express Tj; in terms of hy and k
and partial derivatives of U at (ihy, jk).

Although U and its derivatives are generally unknown it is worth-
while because it provides a method for comparing the local accuracies
of different difference schemes approximating the PDE.

Example 49
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8.9 Consistency and Compatibility

89 CONSISTENCY AND COMPATIBILITY

It is sometimes possible to approximate a parabolic or hyperbolic
equation with a finite difference scheme that is stable but which
does not converge to the solution of differential equation as the mesh
lengths tend to zero. Such a scheme is called inconsistent or incom-
patible.

This is useful when considering the theorem which states that is a
linear finite difference equation is consistent with a properly posed
linear IVP then stability guarantees convergence of w to U as the
mesh lengths tend to zero.

Definition Let L(U) = 0 represent the PDE in the independent vari-
ables x and t with the exact solution U.

Let F(w) = 0 represent the approximate finite difference equation
with exact solution w.

Let v be a continuous function of x and t with sufficient derivatives to
enable L(v) to be evaluated at the point (ihy, jk). Then the truncation
error T;j(v) at (ihy, jk) is defined by

Tij(v) = F;j(v) — L(vy;)

If T;j(v) — 0as h — 0, k — 0 the difference equation is said to be
consistent or compatible with the with the PDE. o

Looking back at the previous example it follows that the classical
explicit approximation to

u_ou
ot  ox?

is consistent with the difference equation.

8.10 CONVERGENCE AND STABILITY

Definition By convergence we mean that the results of the method
approach the analytical solution as k and h, tends to zero. o

Definition By stability we mean that errors at one stage of the calcu-
lations do not cause increasingly large errors as the computations are
continued. o

8.11 STABILITY BY THE FOURIER SERIES METHOD (VON NEU-
MANN’S METHOD)

This method uses a Fourier series to express Wpg = w(phy, gk) which
is
Wpq = €FE
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8.11 Stability by the Fourier Series method (von Neumann’s method)

where ¢ = % in this case i denotes the complex number i = y/—1 and
for values of B needed to satisfy the initial conditions. ¢ is known as
the amplification factor. The finite difference equation will be stable
if |wp,| remains bounded for all q as & — 0,k — 0 and all B.

If the exact solution does not increase exponentially with time then a
necessary and sufficient condition is that

gl <1

8.11.1  Stability for the explicit FTCS Method

Investigating the stability of the fully explicit difference equation
1 1

7 (Wpgr1 — wyg) = E(wp_lq = 2Wpg + Wp+1g)

approximating %4 = %27121 at (phy, gk). Substituting w,, = €'F*¢¥ into

the difference equation

elPPhEa+l _ pifprhad — p{oP(p=Dhzq _ ppifrhad | oif(p+1)hza)
where r = h% Divide across by ¢/f(P)"#1 Jeads to

E—1 = r(ePEDR_2 4 PN
= 14 r(2cos(Bh) —2)

— 11— ar(sin2(81)).

2
Hence L
1-— 4r(sin2(,B§)) <1,
for this to hold .
4r(sin2(ﬁ§)) <2,
which means 1
< —.
"=3

0 < ¢ < 1forr < } and all B therefore the equation is conditionally
stable.

8.11.2  Stability for the implicit BTCS Method

Investigating the stability of the fully implicit difference equation

—_

%(wpq—&-l — Wpg) = hﬁ(wp—lq+1 — 2Wpg 1 + Wpt1g+1)
X
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8.11 Stability by the Fourier Series method (von Neumann’s method) 120

. . 2
approximating aa—lf = %7%[

the difference equation

at (phy, gk). Substituting w,, = ¢'f*¢4 into

eiﬁphgtﬁrl . ei‘Bpth — r{eiﬁ(pfl)thJrl o Zeiﬂphéqul + eiﬁ(p+1)h€q+1}
where r = h% Divide across by ¢/f(P)&1 leads to

E—1 = rE(ePCD o o
= rg(2cos(ph) —2)
= —4rg(sin®(BD))

Hence
1

144 sinz(%)
0 < ¢ <1forall » > 0and all B therefore the equation is uncondi-
tionally stable.

8.11.3 Stability for the Crank Nicholson Method

Investigating the stability of the fully implicit difference equation

1 1
(Wpg1 —Wpg) = 2 (Wp—1g+1 — 2Wpgi1 + Wpy1g41) + 2 (wp—15 — 2Wpg +Wpy14)
X X

==

approximating %4 = %27121 at (phx, gk). Substituting w,, = €'f*¢¥ into
the difference equation
PBPREIHL _ pifpha %{eiﬁ(pfl)héqul  2plPPhEIHL y piB(p 1)1

+e/Pp=Vhaq _ peiPphza 4 eiﬁ(pﬂ)hgq}
where r = h% Divide across by ¢/f(P)'#7 leads to

-1 = %g(eﬂ‘ﬁh _ ey %{eﬂ'ﬁh _ 24 by

= %§(2 cos(ph) —2) + %(2 cos(Bh) —2)
= —2rg(sin®(L)) — 2r(sin’(B2))
Hence
 1+2rsin(8h)

0 < ¢ <1forall > 0and all B therefore the equation is uncondi-
tionally stable.



8.12 Parabolic Equations Questions

8.12 PARABOLIC EQUATIONS QUESTIONS

8.12.1  Explicit Equations

1. a)

b)

Use the central difference formula for the second deriva-
tive

f”(x()) _ f(X() +h> _Zf}E;CO) —|—f(X() _h) + O(hz)

to derive the explicit numerical scheme

Wjky1 = 1wj_1x + (1= 2r)wjx + rwjax,

where v = h—kz, k is the step in the time direction and # is

the step in the x direction, for the Heat equation

ou  d%u

ot ox?
on the rectangular domain
Q={(tx)]0<t0<x<1}

[10 marks]

Consider the problem

ou  d%u

ot ox?
on the rectangular domain
Q={(tx)]0<t0<x<1},
with the boundary conditions
u(0,t) =1, u(1,t) =1,
and initial condition
u(x,0) = 4x> —4x + 1.

Taking h = % in the x-direction and k = 31—2 in the t-direction,
set up and solve the corresponding systems of finite differ-
ence equations for one time step.

[18 marks]

For the explicit method what is the step-size requirement
for h and k for the method to be stable.

[5 marks]
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2.

a)

b)

c)

8.12 Parabolic Equations Questions

Use the central difference formula for the second deriva-
tive

f/l(xo) _ f(xo +h) — 2f;1§0> +f(x0 — h) + O(l’lz)

to derive the explicit numerical scheme
Wjky1 = 1wj_1x + (1= 2r)wjx + rwj1 4,

where r = h—kz, k is the step in the time direction and 7 is
the step in the x direction, for the Heat equation

ou d*u

ot 9x2

on the rectangular domain
Q={(tx)]0<t0<x<1}

[10 marks]

Consider the problem

ou  o%u

ot ox?

on the rectangular domain

QO={(tx)]0<t0<x <1},

with the boundary conditions
u(0,t) =1, u(1,t) =1,

and initial condition

u(x,0) = 1—x forogtg%
A for%gtgl.

Taking h = % in the x-direction and k = zlﬁ in the t-

direction, set up and solve the corresponding systems of
finite difference equations for one time step.

[18 marks]

For the explicit method what is the step-size requirement
for h and k for the method to be stable.

[5 marks]
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3.

a)

b)

8.12 Parabolic Equations Questions

Use the central difference formula for the second deriva-
tive

f/l(xo) _ f(xo +h) — 2f;1§0> +f(x0 — h) + O(l’lz)

to derive the explicit numerical scheme
Wjky1 = 1wj_1x + (1= 2r)wjx + rwj1 4,

where r = h—kz, k is the step in the time direction and 7 is
the step in the x direction, for the Heat equation

ou d*u

ot ox?
on the rectangular domain
Q={(tx)]0<t0<x<1}
[10 marks]
Consider the problem

ou  o%u

ot ox?

on the rectangular domain

QO={(tx)]0<t0<x <1},

with the boundary conditions
u(0,t) =0, u(l,t) =0,
and initial condition
u(x,0) = 2sin(27x)

Taking h = % in the x-direction and k = l}ﬂ in the t-

direction, set up and solve the corresponding systems of
finite difference equations for one time step.

[18 marks]

For the explicit method what is the step-size requirement
for h and k for the method to be stable.

[5 marks]
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4.

8.12 Parabolic Equations Questions

8.12.2 Implicit Methods

a)

b)

Use the central difference formula for the second deriva-
tive

fﬁ(xo) _ f(xO +h) - zf;;o) +f(x0 - h) + O(hz)

to derive the implicit numerical scheme
—rwj 1+ (14 2r)wjx — rwj 1, = Wik,

where r = h—kz, k is the step in the time direction and 7 is
the step in the x direction, for the Heat equation

ou  d%u

ot ox?
on the rectangular domain
Q={(tx)]0<t0<x<1}.
[13 marks]
Consider the problem

ou  d%u

ot ox?

on the rectangular domain

Q={(tx)]0<t0<x <1},

with the boundary conditions

u(0,t) =1, u(1,t) =1,
and initial condition

u(x,0) = 4x* —dx + 1.

Taking i = } in the x-direction and k = 35 in the t-direction,
set up and write in matrix form (but do not solve) the cor-
responding systems of finite difference equations for one
time step.

[20 marks]
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5.

a)

b)

8.12 Parabolic Equations Questions

Use the central difference formula for the second deriva-
tive

f/l(xo) _ f(xo +h) — 2f;1§0> +f(x0 — h) + O(l’lz)

to derive the implicit numerical scheme
—rwj 1k + (L4 2r)wjx — rwj 1, = Wik,

where r = h—kz, k is the step in the time direction and 7 is
the step in the x direction, for the Heat equation

ou d*u

ot 9x2

on the rectangular domain
Q={(tx)]0<t0<x<1}

[13 marks]

Consider the problem

ou  o%u

ot ox?

on the rectangular domain

QO={(tx)]0<t0<x <1},

with the boundary conditions
u(0,t) =1, u(1,t) =1,

and initial condition

1—x for0<t< %
u(x,0) = . .
X for ; <t <1
Taking h = % in the x-direction and k = zlﬁ in the t-
direction, set up and write in matrix form (but do not
solve) the corresponding systems of finite difference equa-
tions for one time step.

[20 marks]

Use the central difference formula for the second deriva-
tive
" Xo+h)—2f(xg)+ f(xo—h
f (xo):f( 0 ) f}gzo) f( 0 )-f-O(hz)
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7.

b)

8.12 Parabolic Equations Questions

to derive the implicit numerical scheme

—rwj 1+ (14 2r)wjx — rwj 1, = Wik,

where v = h—kz, k is the step in the time direction and # is

the step in the x direction, for the Heat equation

ou  d%u

ot ox?
on the rectangular domain
QO={(tx)|0<t0<x<1}.
[13 marks]

Consider the problem

ou  o%u

ot ox?

on the rectangular domain

Q={(tx)]0<t0<x<1},

with the boundary conditions
u(0,t) =0, u(l,t) =0,
and initial condition

u(x,0) = 2sin(27mx)

Taking h = % in the x-direction and k = 1}@ in the t-
direction, set up and write in matrix form (but do not
solve) the corresponding systems of finite difference equa-

tions for one time step.

[20 marks]

8.12.3 Crank Nicholson Methods

a)

Use the central difference formula for the second deriva-
tive
% f(xo+h) —2f(x0) + f(x0 — h)

f(x0) = - +0(?)
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b)

8.12 Parabolic Equations Questions 127

to derive the Crank Nicholson numerical scheme

—1Wj_ 1k + (2+2r) Wk — 1wig 1k = 1Wj_1 )+ (2= 27)Wj g +TWj 11 ks

where r = h—kz, k is the step in the time direction and # is

the step in the x direction, for the Heat equation

ou  d%u

ot ox?
on the rectangular domain
QO={(tx)|0<t0<x<1}.
[13 marks]
Consider the problem

ou  o%u

ot ox?

on the rectangular domain

Q={(tx)]0<t0<x<1},

with the boundary conditions

u(0,t) =1, u(l,t) =1,
and initial condition

u(x,0) = 4x> —4x 4+ 1.

Taking h = % in the x-direction and k = % in the t-direction,
set up and write in matrix form (but do not solve) the cor-
responding systems of finite difference equations for one
time step.

[20 marks]

Use the central difference formula for the second deriva-
tive

7

f (xO) _ f(xo +h) _Zf’/(l;CO) +f(x0 _h) + O(h2>

to derive the Crank Nicholson numerical scheme

—TWj 1k + (2+2r) Wik —rwiy1x = 1Wj_1 )+ (2= 20)Wj g +TWj 11k



b)

8.12 Parabolic Equations Questions

where r = h—kz, k is the step in the time direction and F is

the step in the x direction, for the Heat equation

ou  o%u

ot ox?

on the rectangular domain
QO={(tx)|0<t0<x<1}.

[13 marks]

Consider the problem

ou  d%u

ot ox?

on the rectangular domain

Q={(tx)]0<t0<x <1},
with the boundary conditions
u(0,t) =1, u(1,t) =1,
and initial condition

1—x forOStS%
u(x,0) = . .
X for; <t <1

Taking h = % in the x-direction and k = zlﬁ in the t-
direction, set up and write in matrix form (but do not
solve) the corresponding systems of finite difference equa-
tions for one time step.

[20 marks]

Use the central difference formula for the second deriva-
tive

£ (x0) = flxo+h) - Zf;E;CO) +flo—h) | o)

to derive the Crank Nicholson numerical scheme

128

—TWj_1x + (2+ 2r)wj,k —TWji1p = TWj—1k + (2— 2r)wj,k + Witk

where v = h—kz, k is the step in the time direction and # is

the step in the x direction, for the Heat equation

ou  d%u

ot 9x?



b)

8.12 Parabolic Equations Questions

on the rectangular domain
QO={(tx)|0<t0<x<1}.
[13 marks]
Consider the problem

ou  o%u

ot 9x2

on the rectangular domain

Q={(tx)]0<t0<x<1},

with the boundary conditions
u(0,t) =0, u(l,t) =0,
and initial condition

u(x,0) = 2sin(27x)

Taking h = % in the x-direction and k = 11—4 in the t-
direction, set up and write in matrix form (but do not
solve) the corresponding systems of finite difference equa-

tions for one time step.

[20 marks]
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ELLIPTIC PDE’S

The Poisson equation is,
~V2U(x,y) = f(xy), (vy) €Q=(01)x(0,1),  (68)
where V is the Laplacian,

2

Vo2t

with boundary conditions,

U(x,y) = g(x,y), (xy)€ dQ-boundary.

0.1 THE FIVE POINT APPROXIMATION OF THE LAPLACIAN

To numerically approxiamte the solution of the Poisson Equation
the unit square region ) = [0,1] x [0,1] = QU9Q must be discre-
tised into a uniform grid.

A ={(x;,y;) € [0,1] x[0,1} : x; = ih,y; = jh}

fori=0,1,.,Nandi=0,1,., N, where N is a positive constant. The
interior nodes of the grid are defined as:

Oy ={(x,y;)) € A:1<i,j<N—1},
the boundary nodes are
th = {(x()/yj)/ (ery]')/ (xi/yO)/ (xiryN) 01 S l/] S N — 1}

The Poisson Equation [68|is discretised using 62 the central difference
approximation of the second derivative in the x direction

1
(5)% = ﬁ(wi+1]‘ — sz‘]' + wi,l]-),
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9.1 The five point approximation of the Laplacian

and (55 the central difference approximation of the second derivative
in the y direction

1
&y = 72 (Wijr1 — 200ij + wij1).

The gives the Poisson Difference Equation,

~Viywi; = fii (xi,y;) € (69)
—(5,%@01-1- + 5§wi]-) = fi]‘ (xi,yj) € Qy, (70)
wij = gij (xi,y;) €0y, (71)

where w;; is the numerical approximation of U at x; and y;. Ex-
panding the the Poisson Difference Equation [71] gives the five point
method,

2
—(wi,lj + wijj1 — 4’(1)1']‘ + Wij1 + wi+1j) =h fij

fori =1,..,N—1and j = 1,..,N — 1, which is depicted in Figure

on a 6 discrete grid.

upper boundary

r ® & ] & )
le ® ® @ ® ']
g

E e & o g
=
= Q
= 2
2 E
c le ® e 2
n

e - L B

| ® e @ ® =]

lower boundary

® @ known
® & unknown

—  Stencil

Figure g9.1.1: Graphical representation of the difference equation sten-
cil

Unlike the Parabolic equation, the Elliptic equation cannot be es-
timated by holding one variable constant and then stepping in that
direction. The approximation must be solved at all points at the same
instant.
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9.1 The five point approximation of the Laplacian 132

9.1.1 Matrix representation of the five point scheme

The five point scheme results in a system of (N — 1)2 equations for the
(N — 1)? unknowns. This is depicted in Figure onab6x6=236
where there is a grid of 4 x 4 = 16 unknowns (red) surround by the
boundary of 20 known values. The general set of 4 x 4 equations of
the Poisson difference equation on the 6 x 6 grid where

Lo 11
6—1 !
can be written as:

j=
: 12
i=1]wyy +wio—4dwy +wip+wy = 3 fi
. . 12
i=2|w+wyo—4wy +wWop+ws1 = 3 fn
. 12
i =3 |wy +wso—4w31+wsp+wy1 = 35 fa1
. 1 2
i=4 | w3y +wyo—4dwy +wyo+ws1 = z fu
I 2
: 1
i=1|wp+wy —4wip+wiz+wy = 5 f12
. 1 2
i=2|wp+wy —4dwrp +wrz+wsy = sz fo
. 12
i1 =3 |wyp+ws1 —4wsp + W3z +wWsp = 5 fa
. 12
=4 | w3p+wy1 —dwyp +wyzt+wsy = 35 fa
J 2
. _ _ 1
i=1|wos+wip—4wiz+wiat+wys = 35 f13
. 2
=2 | w3+ wy—4dwys+wrs+wss = = fo3
. 12
1= W3+ Ww3p — 4ZU3,3 + W34+ W3 = 5 f33
. 12
i =4 | w33+ wyr —4wys + Wyq + Ws3 5 f13
]= X
. 1
i=1|wos+wis—4wis+wis+woy 5 fa
, 12
i=2| w4+ wys —4wrs + W5+ Wiy 5 foa
. 12
i =3 | w4+ w33 —4wsg + W35+ Wyy 5 f3
. 12
=4 |w3q+wy3—4Wys +Wys5+Ws4 = 5 fa4

This set of equations can be re-arranged by bringing the known bound-
ary conditions wy ;, ws;, w;p and w;s, to the right hand side. This can
be written as a 16 x 16 Matrix equation of the form:



9.1 The five point approximation of the Laplacian 133

—Wo
0
0
—Ws,1

N N R «
o 0l o Lo
Soo 8|S o 8
| L] |

—Wo4
0
0

=
15
i

_|_

4,0

O O O OO0 o o O

—W1,0
—wW2,0
—w3,0
—w

—W1,4
— W24
— W34
— W44

fia
fan
f31
fan
fi2
f2p
f32
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fi3
f23
133
fa3
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faa
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Wy
w13
w23
w33
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w
w1
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w12
w14
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w
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9.1 The five point approximation of the Laplacian

The horizontal and vertical lines are for display purposes to help in-
dicated each set of the four sets of four equations.

9.1.2 Generalised Matrix form of the discrete Poisson Equation

The generalised form of this matrix of the system of equations for
the parabolic case results in (N — 1) equations, that are written as an
(N —1)% x (N —1)2 square matrix A and the (N — 1)? x 1 vectors w,
r and b:

Aw = —hr +Db.

The matrix can be written as following block tridiagonal structure
(Figure SparseMatrix) :

T I 0 0 . . . W1 f1 b1
I T 100 w) f b,
0 0 _ 2 . n
0 1 T I WN-_2 foZ bez
I T WN_1 fno1 by_1

where I denotes an (N — 1) x (N — 1) identity matrix and T is an
(N —1) x (N —1) tridiagonal matrix of the form:

-4 1 00
1 -4 100
0 .. .0

w;is an (N — 1) x 1 vector of approximations w;;,
wo;

WN-2j
WN-1j

the vector f is made up of (N — 1) vectors of length (N —1) x 1,

fij
foj

= |

N2

N1
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9.2 Specific Examples

finally b is the vector of boundary conditions made up of two (N — 1)
vectors of length (N —1) x 1,

80j 0
0 0
b] = bleft,right,j + btop,bottom,j = - ' -
0 0
8Nj 0
forj=2,.,N—-2,forj=1landj=N—-1
810 810 SON-1 SIN
0 820 0 82N
b, = — ) — ' , byo1=— : _
0 SN-20 0 SN-2N
SIN SIN SNN-1 SN-1IN

0 50 100 150 200 250 300

100

150

200

250

300

Figure 9.1.2: Graphical representation of the large sparse matrix A
for the discrete solution of the Poisson Equation

The matrix has a unique solution. For sparse matrices of this form
an iterative method is used as it would be to computationally expen-
sive to compute the inverse.

9.2 SPECIFIC EXAMPLES

This section will work through three example problems:
1. Homogenous form of the Poisson Equation (Lapalacian),
2. Poisson Equation with zero boundary conditions,

3. Poisson Equation with non-zero boundary conditions.

135



9.2 Specific Examples

9.2.1  Example 1:Homogeneous equation with non-zero boundary

Consider the Homogeneous Poisson Equation (also known as the
Laplacian):

%u  d*u

St =0, (xy)€Q=(01)x(0,1),

with boundary conditions:
lower boundary,
u(x,0) = sin(27x),

upper boundary,

u(x,1) = sin(2mx),
left boundary,

u(0,y) = 2sin(27my),
right boundary:.

u(l,y) = 2sin(2my).

The general difference equation for the Laplacian is of the form
—(wi—1j + wij—1 — 4wjj + Wij+1 + wiqy) = 0.

Here, N = 4, which gives the step-size,

hzil

and
1 1
Yi=1y Y=y
fori =0,1,2,3,4and j = 0,1,2,3,4. This gives the system of 3 x 3
equations:

]' —

. 2
i=1|wo+wp—4wig+wipt+wy = 30
. 12
i=2 w1 +wyo—4wy1 +wrpt+wsy = 70
. 2
i=3|wy1 +wso—4wss +wsp+wy; = 10
j=2

. 2
i=1|wop+wig—4dwip+wiz+wry = 10
. 2
i=2|wip+wy —dwyp+wyz+wsy = 10
. 12
1=3 Wop + W31 — 4ZU3,2 +wsstwip = 3 0
j=

i=1| w3+ wip— 4w+ wig+ w3 :
i=2| w3+ wro —4wrz + wps + w3z = %
1i=3 W3 + Ww3p — 4ZU3,3 + W34 + Wys3 411
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This system is then rearranged by bringing the known boundary

9.2 Specific Examples

conditions to the right hand side, to give:

j=1

i= —dwig +wip+wry = g 20— Wo,1 — W10
i=2| w1 —4wy1 +wrp+w3z1 = %20 — Wayp

i=3 Wy — 4wz +wsy = %20 — Wy — W30
j=2

i=1 w11 — 4wy + Wiz + wop %20 — Wo.2
=2 | wyp+ w1 — 4w +wrsz+ w3y = %20

1= Wy + w31 — 47,03,2 ‘w3z = %20 — Wyp
j=3

i=1 w1 — 4wy 3 + W3 %20 — Wo3 — W14
i=2| w3+ wyp —4wyz+ w33z = %20 — W4

i= Wy3 + w3 —4wsz = %20 — Wy3 — W34

Given the discrete boundary conditions:

Left boundary
Xg = 0

u(0,y) = 2sin(2my)
wo,0 = 0

wo,1 = 2sin(27y;
wWop = 2sin
wop,3 = 2sin
Wo4 = 28in(271yy

Lower boundary
Yo=0
u(x,0) = sin(27x)
wo,0 = 0
w1 = sin(
w20 = Sil’l(ZT[Xz
w30 = sin(

in

(27ty1)
(27ty2)
(2my3) = 2
(27ty4)

Right boundary
X4 = 1
u(l,y) = 2sin(2my)
Wya0 = 0
wg1 = 2sin(27y4
wyp = 2sin(27y,
(
(

|
o N

Wy 3 = 2sin(27mys3
Wy = 28Iin(27TY4

— — — —
I\)

Upper boundary

ya=1

u(x,1) = sin(27x)

Wo4s = 0

w1 4 = sin( )

W4 = sin( )

w34 = sin(27tx3) = —1
(27124)
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9.2 Specific Examples 138

Boundary Values

Figure 9.2.1: Sine Wave Boundary Conditions.

The system of equations are written in matrix form:

—4 1 0 1 0 0 0 0 0 w11 —w1,0 —wWon
1 -4 1 0 1 0 0 0 0 Wo1 —wy 0
0 1 —4 0 0 1 0 0 0 w31 —w3,0 —W4
1 0 0 —4 1 0 1 0 0 w12 0 —wWo,2
o 1 0 1 -4 1 0 1 0 wyy | = 0 + 0
o o0 1 0 1 -4 0 0 1 w32 0 —Wap
0 0 0 1 0 0 —4 1 0 w1,3 — W14 —wo,3
0 0 0 0 1 0 1 —4 1 w23 — W24 0
0 0 0 0 0 1 0 1 —4 w33 —W34 —Wy3

where the matrix is 32 x 32 which is graphically represented in Figure
where the colours indicated the values in each cell.

0 2 4 & 8

Figure 9.2.2: Graphical representation of the matrix




9.2 Specific Examples

For the given boundary conditions the matrix equation is written
as :

—_
(@]
—_

ZUL1 -1
wz1 0
w31 1
w12 0
0
0

|
NS
[ =
=
o
_ O =k O

|
N

w32 =

OO R, O oo

w32
ZUL3 —1
ZUZ,3 0
ZU3,3 1

_ O = O O O oo

OOOOO!—\OHHL
cCooc o RO R
coo R~ oo

COoO RO

(e}
—_
|
S

Figure shows the approximate solution of the Laplacian Equa-

tion for the given boundary conditions and h = 1.

Numerical Approximation of the Poisson Equation

Figure 9.2.3: Numerical solution of the homogeneous differential
equation

9.2.2  Example 2: non-homogeneous equation with zero boundary

Consider the Poission Equation

*u  d%u
@ @:x2+y2 (x,]/)GQ:<O,1)X<O,1)

with zero boundary conditions: Left boundary:
u(x,0) =0

Right boundary:
u(x,1) =

Lower boundary:
u(0,y) =0
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9.2 Specific Examples

Upper boundary:
u(1l,y) =0.

The difference equation is of the form:
—(Wi1j + wij 1 — 4wy + Wiy + wirag) = K + y7).

Here, N = 4, which gives the step-size,
h==Z,

and
1 1
Xi = 111 Yj :]1/
fori =0,1,2,3,4and j = 0,1,2,3,4. This gives the system of 3 x 3
equations:

]' =
=1 Wi — 4wy 4w+ Vd+vd)
1= Wo,1 + W1,0 W11 T W12 T W21 1 X1 TWy
. _ 12,02, .2
i =2 w1 +wyo—4wy+wrp+ws1 = 3 (¥5+Y7)
=3 +wsg — w1 + w3 + = Y3+
1=3 |wy1 +wsp—4ws; +w3p+ws1 = 3 (X3+Y]
] = 5
S 12,2, 2
i=1|wop+ w1 —4wip+wiz+wry = I (Xl + yz)
5 4 _ 12,2, .2
1= w1y + Wo 1 Wyp+wWos+wsy = 5 (¥3+y3)
. 12
=3 |wyp+ w31 —4wsp +wss+wsp = 7 (x5 +y3)
j=3
=1 —4 1232 142
1=1|wo3+wip—4wisz+ wia+ w3 i (x]+v3)
i=2|w —4 — 172 2
= 13+ Wa2 — 4wz +wos twss = g (%5 +Yy3)
. 12
i1=3 | w3+ w3y —4wss+wss+wss = 7 (x5 +y3)

This system is then rearranged by bringing the known boundary con-
ditions to the right hand side, to give:

j

. _ 12/ 2 2

i=1 —4wi +wip+ w1 = 3 (X7 Y1) —Wo1 — wip
. . 12/.2 2

i=2 w1 —4dwy twp+ws1 = g (¥5+y7) —wap

. _ 12,2 2

i=3 wo1 —4wsy +wsx = 3 (X5+Yy) —wan —wsp
] - 2

c 2 2

i= w1 — 4w+ Wiz + wop (x] +y3) — wop

2
(x5 +y3)

(33 +y3) — wap

i=2|wip+wy — 4wy +wyz+wzy =

N

NSNS

i=3 Wop + w3y —4wsy +wzz =
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j=3

i=1 wip — 4wz + w3 %Z(X% +13) —wos — w4
1=2 w13+ Wop — 4:ZU2,3 + w33z = %Z(X% + y%) — W4

i=3 Wo3+ w3y —4wss = %Z(JC% + y%) — W43 — W3 4.

Given the zero boundary conditions

Lower Boundary Upper Boundary
x0=20 xg=1
u(0,y) =0 u(Ly) =0
wo,0 = 0 wgo =0
wo1 =0 wy1 =0
w2 =0 wyp =0
wo3 =0 wy3 =0
wo4 =0 Wy =0
Left Boundary Right Boundary
Yo =0 yas=1
u(x,0) =0 u(x,1)=0
wop =0 woq =0
w1 =0 w4 =0
w0 =0 w4 =0
w30 =0 w34 =0
wyp =0 wys =0

Boundary Values

Figure 9.2.4: Sine Wave Boundary Conditions.

The system of equations can be written in matrix form:

-4 1 0 1 0 0 0 0 0 w1 (x3+y
1 -4 1 0 1 0 0 0 0 w1 (x3+y
0O 1 -4 0 0 1 0 0 O w3 (x3+y
1 0 0 -4 1 0 1 0 0 P (x2+y
o 1 0 1 -4 1 0 1 0 wyo | =1 (A +y
o 0 1 0 1 —4 0 0 1 w3 (x3+y
O 0 0 1 0 0 -4 1 0 w1 3 (x3+y
o 0 0 0 1 0 1 -4 1 w3 (x3+y
o 0 0 0O 0 1 0 1 -4 w33 (x3+y

WRNWNWNNRNNNNNRN=NFRN

— e e N N N S N N
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Substituting values into the right hand side gives the specific matric

form:
-4 1 0 1 0 0 0 0 0O Wy
1 —4 1 1 0 0 0 0 wz1
0O 1 -4 0 O 1 0O 0 0 w31
1 0 0 —4 1 0 1 0 0 w12
0 1 0 1 —4 1 0 1 0 w22
0 0 1 0 1 -4 0 O 1 w32
0O 0 0 1 0O 0 —4 1 0 w13
0 0 0 0 1 0 1 —4 1 w23
o 0o 0 o0 O 1 0 1 —4 w33

0.0078125
0.01953125
0.0390625
0.01953125
0.0312
0.05078125
0.0390625
0.05078125
0.0703125

Figure shows the numerical solution of the Poisson Equation

with zero boundary conditions.

Numerical Approximation of the Poisson Equation

Figure 9.2.5: Numerical solution of the differential equation with zero

boundary conditions

9.2.3 Example 3: Inhomogeneous equation with non-zero boundary

Consider the Poisson Equation

P,
ox2  dx?
with boundary conditions
Right Boundary
u(x,0) = —x> +x

Left Boundary

u(x,1) =x2 —x

Lower Boundary
u(0,y) = —y* +y

=xy, (vy)€Q=(0,1)x(01),
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Upper Boundary
u(Ly) = -y +y.
The five point difference equation is of the form
—(wi_1j + wij—1 — 4wij + wij1 + wir1;) = h(xy;).
Here, N = 4, which gives the step-size,

h=—,

and
1 1

Xi = 11/ y] = ]1/

fori =0,1,2,3,4and j = 0,1,2,3,4. This gives the system of 3 x 3
equations:

i=1|wy1+wy— 4w+ wip+w %z(xlyl)
1=2 w11 + w0 — 4ZU2/1 +wrp +w3z1 = %2(x2y1)
i=3|wy +w3g— 4wz +wsp +ws; = }12(x3y1)
j=

i=1|wyp+wi —4wip + w3+ wop %z(xlyz)
i =2 |wip+wy1 —4wrr +wrz+ w3y = %Z(XZW)
i=3|wyp+ws1 —4dwsy +wsz+wyy = %2(3(3]/2)
j=

i=1|wo3+wip— 4wz +wis+wr3 = }12(?61]/3)
i=2| w3+ wo —4wrs +wrs + w33 = i2(xzy3)
i =3 | w3+ w3y —4wsz+ wsg+wys = %2(x3y3)~

Re-arranging the system such that the known values are on the right
hand side:

j=1

. 12

i=1 —4w;1 + wip + wo 1 (x1y1) —wo1 — wip
=2 w1 —4wy +wpt+ws; = %z(xzyﬂ — W20

i=3 Wy — 4wz, + w3y = %z(xm) — Wy — W30
j=2

i=1 w1 — 4wy + w3+ Wop %z(xwz) — Wo,2
=2 |wip+wy —4wrp + Wz +wsy = %2(362]/2)

i=3 Wy + w31 — 4wz +wsz = %2(X3y2) — Wy
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j=3
i=1

i=3

w1 — 4wz + w3
1=2 w13+ W — 4ZU2,3 + w33
wWo3 + w3p —4ws3

9.2 Specific Examples

N

(x1y3) — W3 — W14
(X2y3) — W24
(X3Y3) — Wy3 — W3 4.

N

W= = =
N

The discrete boundary conditions are

Left boundary

Xg = 0

u(0,y) = —y* +y
wo,0 = 0
Wo1=—Yi+1y1 =
wo,2 —y% +y2 =
wWo3 = —y% +ys =

SR

Woa = —Yij+ys=0

Lower boundary

Yo=0

u(x,0) = —x2 +x
wo,0 = 0

w10 = —x% +x1 =
’(,Uz,o = —X% + Xy =
w3, = —x% + x3 =
Wye o = 0

S5

Right boundary

X4 = 1

u(ly) = -y +y
W40 = 0

Wa1 =~y Y= 5g
Wiy = —Y3+ Y2 =g
Wy = —Y3+Ys = %
Wya =~y +ys=0
Upper boundary
ya=1

u(x,1) = x> —x

Wo4a = 0

ZU1,4 = x% — X1 = —%
w24 = X% — X2 = —%
w34 = x% — X3 = —%
Wy 4 = 0

The system of equations can be written in 9 x 9 Matrix form:

|
N

oNeNeoBeoNell =l

1 0 1 0
-4 1 1
1 -4 0 0
0 0 —4 1
1 0 1 -4
0 1 0 1
0 0 1 0
0 0 0 1
0 0 0 0
(x1y1)
(x2y1)
(x3y1)
(x1y2)
hz (XzyQ) +
(x3y2)
(x1y3)
(x2y3)
(x3y3)

=
W
<
(68)

0 0 0 0 w11
0 0 0 0 w21
1 0 0 0 w31
0 1 0 0 w12
1 0 1 0 w22 =
—4 0 0 1 w32

0 —4 1 0 w13
0 1 —4 1 w23
1 0 1 —4 w33
—W1,0 —Wo,1
— w2/0 0
—wWs3,0 —W4,1

—Wo,2

+ 0 ,

—W4p
—W1,4 —wWo,3
— W4 0
—W34 —W43
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inputting the specific boundary values and the right hand side of the
equation gives:

-4 1 0 1 0 0 0 0 0 w1,
1 -4 1 1 0 0 0 O waa
0o 1 -4 0 0 1 0 0 O w31
1 0 0 —4 1 0 1 0 0 w12
0 1 0 1 —4 1 0 1 0 w22 =
o 0 1 0 1 -4 0 0 1 2y
o 0 0 1 0 0 -4 1 0 w13
0 0 0 0 1 0 1 —4 1 w23
o 0 0 0 0 1 0 1 -4 w33
0.0625 —-3 —-3
0.125 —1 0
0.1875 -3 -3
2| 0125 0 —1
(Z) 025 |+ 0 [+ ©
0.375 0 —1
0.1875 = -
0.375 ! 0
0.5626 = -3

Figure shows the numerical solution of the Poisson Equation
with non-zero boundary conditions.

025
0.0 020
015
0.25 4010
40.05
= 05 4000 =
4-0.05
075 —-0.10
-0.15
10 —-0.20
—0.25

0.0 025 05 075 10
X

Figure 9.2.6: Numerical solution of the differential equation with non-
zero boundary conditions
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9.3 CONSISTENCY AND CONVERGENCE

We now ask how well the grid function determined by the five point
scheme approximates the exact solution of the Poisson problem.

Definition Let L; denote the finite difference approximation associ-
ated with the grid (), having the mesh size h, to a partial differential
operator L defined on a simply connected, open set () C R%. For a
given function ¢ € C*(Q)), the truncation error of Ly is

T(x) = (L — Ly)g(x)
The approximation Lj is consistent with L if

1 =0,
hlir(l)’fh( x)

for all x € D and all ¢ € C®(Q)). The approximation is consistent to
order p if ,(x) = O(hP). o

While we have seen this definition a few times it is always interesting
how the terms are denoted and expressed but the ideas are always
the same.

Proposition 9.3.1. The five-point difference analog —V' is consistent to
order 2 with —V2.

Proof. Pick ¢ € C®(D), and let (x,y) € Q be a point such that (x £
hy), (x,y £h) € QUQ. By the Taylor Theorem

zazq) 3336[) 484

_ o h h +
p(x+hy) = q)(x,y)ihg(x,y)jLiﬁ(x y) £ o5 31 9 S5 (x y)*‘jﬁ(@ )

where {* € (x — h, x + h). Adding this pair of equation together and
rearranging , we get

1 9 n* [ o*
Slo(x+1y) —29(x )+ o(x =l y)] = 5E(xy) = 37 {axf(éﬂy) + 55 )

By the intermediate value theorem
o4 o4
TR+ 3he ] =255,

for some ¢ € (x — h,x 4+ h). Therefore,

aZ 2a4
E(x,y) = 55 (0 y) + 5 55 (V)

Similar reasoning shows that

9 ks
) o Y
O (oY) = 5z (0y) + o5 (o)
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for some € (y —h,y+h). We conclude that 7,(x,y) = (V —
Vi)e(x,y) = O(h?). O

Consistency does not guarantee that the solution to the difference
equations approximates the exact solution to the PDE.

Definition Let L,w(x;) = f(x;) be a finite difference approximation,
defined on a grid mesh size h, to a PDE LU(x) = f(x) on a simply
connected set D C R". Assume that w(x,y) = U(x,y) at all points
(x,y) on the boundary d(). The finite difference scheme converges (or
is convergent) if

max |U(x;) —w(x;)| — 0as h — 0.
]

e}

For the five point scheme there is a direct connection between consis-
tency and convergence. Underlying this connection is an argument
based on the following principle:

Theorem 9.3.2. (DISCRETE MAXIMUM PRINCIPLE). IfV%Vi]' > 0 for
all points (x;,y;) € Qy, then

max Vi < max Vj
(xi,y,) €, (xi/y;) €00y,

If V2Vi; < 0 for all points (x;,y;) € Q, then

min V; > min Vj;
(xiy;) € (xiyj) €90,

In other words, a grid function V for which V2V is nonnegative
on (), attains its maximum on the boundary 90}, of the grid. Simi-
larly, if V2V is nonpositive on (), then V attains its minimum on the
boundary 0€),.

Proof. The proof is by contradiction. We argue for the case V3V;; > 0,
reasoning for the case V;V;; < 0 begin similar.

Assume that V attains its maximum value M at an interior grid point
(x1,yy) and that max,, ,jean, Vij < M. The hypothesis ViVi > 0
implies that

1
Vi < 1(VI+1] + Vi + Vi + Vi)

This cannot hold unless
Viyy=Viy=Vyu=Vya1=M
If any of the corresponding grid points (x71,yr), (xj-1,yr), (X1, yr+1), (X1, Y1)

lies in 9}y, then we have reached the desired contradiction.
Otherwise, we continue arguing in this way until we conclude that
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Vitij+j = M for some point (x744;) € 9Q), which again gives a con-
tradiction. e O
This leads to interesting results

Proposition 9.3.3. 1. The zero grid function (for which U;; = 0 for
all (x;,y;) € QU0Qy, is the only solution to the finite difference
problem

V%Uij = OfOT (xi,yj) € )y,

u,'j = OfOT’ (xi,yj) € 9QYy,.

2. For prescribed grid functions f;; and g;;, there exists a unique solution
to the problem

V%uij = fi]‘fOT’ (xi,y]-) ey,
ui]' = gi]'fOT’ (xi,y]') € th.
Definition For any grid function V : (), J0Q), — R,

Vil = max Vi),
(xiy;) €y,

|V][ao = max [Vjl.
(Xi,yj)Eth

(e]

Lemma 9.3.4. If the grid function V : Q0 |J9Q), — R satisfies the bound-
ary condition Vi; = 0 for (x;,y;) € 0QY,, then

1
IVla < §lI¥3V]la

Proof. Letv = ||V7V||q. Clearly for all points (x;, y;) € Qy,
—v < ViV, <v (72)

Now we define W : ), U3}, — R by setting W;; = %[(xi — %)2 +

(y; — %), which is nonnegative. Also V2W;; = 1 and that ||W|[3n =
L The inequalit (72) implies that, for all points (x;,y;) € Qy,
8 q y P p Yj

Vi(Vii +vW;) > 0
ViV —vW;;) <0

By the discrete minimum principle and the fact that V vanishes on
oY,
Vi < Vi +vWi; < v||[W]|an

Vij > Vij —vWi; > —v||[W|[aq

Since ||[W||sq = %

1 1
[Vila < 3V = gHV%VHQ
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° O

Finally we prove that the five point scheme for the Poisson equation
is convergent.

Theorem 9.3.5. Let U be a solution to the Poisson equation and let w be
the grid function that satisfies the discrete analog

—Viwij = fi for (xi,y;) € Qy,
Wij = &ij fOT (xz-,y]-) S aﬂh
Then there exists a positive constant K such that

U —w||q < KMK?

where
2u
dyt

otu
dx3ay

o*u
ox?

ceey

u-{l J

The statement of the theorem assumes that U € C*(Q). This as-
sumption holds if f and g are smooth enough.

7
[e0] [ee]

Proof. Following from the proof of the Proposition we have

(V2 —VHU

h? [9*U o*u
i = 15

58 (G yi) + W(xi, 1)
for some ¢ € (x;_1,x;41) and #; € (yj-1,Yj+1). Therefore,

W2 [o*u otu
—Villy = fij [ } :

1 @(Ci,yj) + 87]/4(% ;)

If we subtract from this the identity equation —V2w;j = f;; and note
that U — w vanishes on d();, we find that

h? [9*U o*Uu
Vi (Ui; — wy)) [ } .

=13 | 3t G i) + Gy i)
It follows that

1
U = wllo < S|IVi(U = w)|lo < KM
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9.4 Elliptic Equations Questions

9.4 ELLIPTIC EQUATIONS QUESTIONS

1. a)

b)

Use the central difference formula for the second deriva-
tive

£ (x0) = flxo+h) - 2f}(;0) +flo—h) o)

to derive the explicit numerical scheme
Wit + Witk + Wik—1 + Wijey1 — 4w = B fix
for the Elliptic equation

’u  d%u
%2 + Fi f(xy)

on the rectangular domain
Q={(x,y)|a<x<bc<y<d}

[10 marks]

Consider the problem

Pu  d*u

a2 T =Y

on the rectangular domain
O={(xy)l0<x<10<y<1}
with the boundary conditions
u(x,0) = 4x* —4x +1, u(x,1) = 4y —4x +1,

u(0,y) =4y* — 4y +1, u(l,y) = 4> — 4y + 1.

Taking N = 4 steps in the x-direction and M = 4 steps
in the y-direction, set up and write in matrix form (but do
not solve) the corresponding systems of finite difference
equations.

[23 marks]
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a)

b)

9.4 Elliptic Equations Questions

Use the central difference formula for the second deriva-
tive

f/l(xo) _ f(xo +h) — 2f;1§0> +f(x0 — h) + O(l’lz)

to derive the explicit numerical scheme
Wj_1k + Witk + Wik—1 + Wigr1 — 4wj = K fix
for the Elliptic equation

’u  9%u
92 + Fi f(x,y)

on the rectangular domain

QO={(x,y)|a<x<bc<y<d}

[10 marks]

Consider the problem

9x2 " oy? Y

on the rectangular domain
Q={(xy)0<x<10<y<1}
with the boundary conditions
u(x,0) =0, u(x,1) =0,

u(0,y) =0, u(l,y) =0.

Taking N = 4 steps in the x-direction and M = 4 steps
in the y-direction, set up and write in matrix form (but do
not solve) the corresponding systems of finite difference
equations.

[23 marks]
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a)

b)

9.4 Elliptic Equations Questions

Use the central difference formula for the second deriva-
tive

f/l(xo) _ f(xo +h) — 2f;1§0> +f(x0 — h) + O(l’lz)

to derive the explicit numerical scheme
2
Wj_1 ) + Witk + Wik—1 + Wjj1 — dwjr = h*fix
for the Elliptic equation

’u  9%u
92 + Fi f(x,y)

on the rectangular domain

QO={(x,y)|a<x<bc<y<d}

[10 marks]

Consider the problem

P
o9x2  oy? Y

on the rectangular domain
Q={(xy)0<x<1,0<y<1}
with the boundary conditions
u(x,0) =x, u(x,1) = x,

u(0,y) =0, u(l,y) =1.

Taking N = 4 steps in the x-direction and M = 4 steps
in the y-direction, set up and write in matrix form (but do
not solve) the corresponding systems of finite difference
equations.

[23 marks]
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10

HYPERBOLIC EQUATIONS

First-order scalar equation

W g8 xeRt>0 73)
U(x,0) = Up(x) x €R

where a is a positive real number. Its solution is given by
U(x,t) =Up(x—at) t>0

and represents a traveling wave with velocity a. The curves (x(t), )
in the plane (x,t) are the characteristic curves. They are the straight
lines x(t) = xp +at, t > 0. The solution of remains constant
along them.

For the more general problem

%waLa%—g%—ao:f xeR t>0 (74)
U(x,0) = Up(x) x € R

where 4, ap and f are given functions of the variables (x, t), the char-
acteristic curves are still defined as before. In this case the solutions
of satisfy along the characteristics the following differential equa-
tion

‘;ll’: = f —apu on (x(t),t)

10.1 THE WAVE EQUATION

Consider the second-order hyperbolic equation

U U
W_'Ysz:f x€(apB), t>0 (75)

with initial data

U(x,0) = up(x) and %I;I(X,O) =7(x), x € (a,pB)
and boundary data

U, t) =0and U(B,t) =0, t>0
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10.2 Finite Difference Method for Hyperbolic equations

In this case, U may represent the transverse displacement of an elastic
vibrating string of length B — «, fixed at the endpoints and 7 is a co-
efficient depending on the specific mass of the string and its tension.
The spring is subject to a vertical force of density f.

The functions ug(x) and vo(x) denote respectively the initial dis-
placement and initial velocity of the string.
The change of variables

o=,
V7 ox7 TP ot

transforms into

where
N w
w = 1
w»

Since the initial conditions are w;(x,0) = uj(x) and w;(x,0) = vo(x).

Aside
Notice that replacing %% by 2, 327'; by x? and f by 1, the wave equation
becomes

2232 =1

which represents an hyperbola in (x,t) plane. Proceeding analo-
gously in the case of the heat equation we end up with

t—x?2=1

which represents a parabola in the (x, t) plane. Finally, for the Poisson
equation we get
X%+ yz =1

which represents an ellipse in the (x,y) plane.
Due to the geometric interpretation above, the corresponding differ-
ential operators are classified as hyperbolic, parabolic and elliptic.

10.2 FINITE DIFFERENCE METHOD FOR HYPERBOLIC EQUATIONS

As always we discretise the domain by space-time finite difference.
To this aim, the half-plane {(x, ) : —co < x < oo, > 0} is discretised
by choosing a spatial grid size Ax, a temporal step At and the grid
points (x;, ") as follows

xi=jAx je€Z, t"=nAt neN
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10.3 Analysis of the Finite Difference Methods

and let
A

A= —.
Ax

10.2.1 Discretisation of the scalar equation

Here are some explicit methods

o Forward Euler/centered method:

A
n+l _ .n n n
wi™ = uj — Ea(u]-Jrl — uj_l),

o Lax-Friedrichs method,

n n
R - Yt ﬁa(uﬂ —ul )
] 2 2 T\l j=1r

o Lax-Wendroff method,

2

2(.n n n
>4 (ufyq — 2uf +ujy),

A
n—+1 n n n
u. = U ——a(u]- 1—u]-_1)+

j i~ 9
e Upwind method,

n+l _ n

A A
u u} —*(M}'ﬁrl—u}l_l)+E|a|(u7+1—2u}7+u;l_l).

j i 9
The last three methods can be obtained from the forward Euler/-
centered method by adding a term proportional to a numerical ap-
proximation of a second derivative term so that they can be written
in the equivalent form

(1w} — 200 )
(&)

17—&-12 n

A 1
U] ujl — Ea(u}ﬂrl —uj )+ Ek

where k is an artificial viscosity term.

An example of an implicit method is the backward Euler/ centered
scheme

nil |, A j+1

w4 Ea(u]-+1 —

)=

10.3 ANALYSIS OF THE FINITE DIFFERENCE METHODS
10.4 CONSISTENCY

A numerical method is convergent if

li U(x;, t") — w"
aim max [U(xj, #) = wj|
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10.5 Stability

The local truncation error at x;, t" is defined as
the truncation error is

T(At, Ax) = max|7}|
jin

When 7(At, Ax) goes to zero as At and Ax tend to zero independently
is said to be consistent.

10.5 STABILITY
10.6 COURANT FREIDRICH LEWY CONDITION

A method is said to be stable if, for any T here exist a constant Ct > 0
and Jy such that
|[u"|]a < Crl[u’|]a

for any n such that nAt < T and for any At, Ax such that 0 < At <
90,0 < Ax < 6y. We have denoted by ||.||s a suitable discrete norm.
Forward Euler/centered

A
n+l _ n n n
wi™ =uj — Ea(u]-+1 — u]-_l)

Truncation error
O(At, (Ax)?)

For an explicit method to be stable we need

|aA] =

ot
—| <1
a&x‘_

this is known as the Courant Freidrich Lewy condition.
Using Von Neumann stability analysis we can show that the method
is stable under the Courant Freidrich Lewy condition.

10.6.1  wvon Neumann stability for the Forward Euler
u;@ — eiﬁijgn

where
ér — eacAt

It is sufficient to show
15l <1

€n+1ei/8(j)Ax — Cneiﬁ(j)Ax + %a(gneiﬁ(j+l)Ax _ gneiﬁ(jfl)Ax)
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10.6 Courant Freidrich Lewy Condition 157

A iBAx —ipAx
§=1-Za(eP —e i)
F=1- i%a(Zsin(,BAx))
& =1—iMa(sin(BAx))

2] = \/1+ (Aa(sin(BAx)))?

Hence
c>1

therefore the method is unstable for the Courant Freidrich Lewy.

10.6.2 von Neumann stability for the Lax-Friedrich

Cneiﬁ(j-i-l)Ax 4 gneiﬁ(j—l)Ax

§n+1 PB(NAY _ 5 + %a(gneiﬁ(ﬁrl)m _ gneiﬁ(f—l)AX)
PiBAY _ p—ipAx ) 1, .
- —°C e BAx _ —iBAx
¢ 3 + 2a(e e )
_ 1472 a1 —Aa gy
¢ = 5 ¢ + 5 ¢
¢ = cos(BAx) + irasin(BAx)
|G[* < (cos(BAx))? + (ar)?(sin(BAx))>
Hence

<1

for aA < 1.
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VARIATIONAL METHODS

Variational methods are based on the fact that the solutions of some
Boundary Value Problems,

~(p()u' (x)) +q(x)u(x) = g(x,u(x)) (76)

under the assumptions that,

p € Clab, p(x) > po >0,
q€Clab], q(x) >0, (77)
¢ €CY([a,b] xR), gu(x,u) <Ag

then if u(x) is the solution of (76), it can be written in the form y(x) =
u(x) —I(x) with

I(x) :aZ:z—l-,BZ__;, I(a) = a, 1(b) =B,

and y is the solution of a boundary value problem

~(p()y (1) + () (x) = F(x),
y(a),=0 y(b) =0, 78)

with zero boundary values. Without loss of generality we can just
consider problems of the form (78), is known as the:

Classical Problem (D)
—(p(x)u' (x)) +q(x)u(x) = f(x),
u(a) =0, u(b)=0.

The assumptions on the Classical Problem can be relaxed such that
f € Ly([0,1]), such that

u(x) € Dy = {u € C%[a,b] | u(a) = 0,u(b) = 0}.

Convolving the Classical Problem (D) with the function v(x) gives
the problem

b !/
[ ) + a(ufodr = [ fxjoxa,
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VARIATIONAL METHODS 159

where v € D. Integrating by parts gives the simplified problem gives
the:

Weak Form Problem (w)

[ e (299 () + gl = [ fejolx)ax

It is sufficient to solve the Weak Form (W) of the Classical Problem (D).
From the Weak Form we have two definitions:

1. Definition (Bilinear Form)

b !’ !/
a(u,v) = /a [p(x)u (x)o (x) + g(x)u(x)o(x)]dx;

b
(F,0) = | f)ox)dx,
where f € Ly([a,b]).
From these definitions the Weak Form of the ODE problem (D) is then
given by
a(u,0) = (£,0),

where u € D is the solution to the Classical Problem.
The Weak Form of the problem can be equivalently written in a Vari-
ational or Minimisation form of the problem is given by,

Variational/Minimization form (M):

F(o) = 50(0,0) = (£,0)

where f € Ly([a,b]). This gives the problem
F(u) <F(v), allve D

such that the function u that minimizes F over Dj.

Theorem 11.0.1. We have the following relationships between the solutions
to the three problems Classical Problem (D), Weak Form (W) and Mini-
mization Form (M).

1. If the function u solves Classical Problem (D), then u solves Weak
Form (W).

2. The function u solves Weak Form (W) if and only if u solves Mini-
mization Form (M).

3. If f € C([0,1]) and u € C*([0,1]) solves Weak Form (W), then u
solves Classical Problem (D).



11.1 Ritz -Galerkin Method

Proof. 1. Let u be the solution to Classical Problem (D); then u
solves Weak Form (W) is obvious, since the Weak Form (W)
derives directly from Classical Problem (D).

2. a) Show Weak Form (W) = Minimization Form (M).
Let u solve Weak Form (W), and define v(x) = u(x) +z(x),
u,z € Di. By linearity

F(v)

a(u+z,u+z)—(f,u+z)
(u) + 2a(z,z) +a(u,z) — (f,2)
(u)—f—%a(z,z)

Il
N TN

which implies that F(v) > F(u), and therefore u solves
Minimization Form (M).

b) Show Weak Form (W) <= Minimization Form (M).
Let u solve Minimization Form (M) and choose ¢ € R,
v € D;. Then F(u) < F(u + €v), since u +€ev € D;. Now
F(u + €v) is a quadratic form in € and its minimum occurs

ate=01e aF )
u-+ev
0 =% le=o

= a(u,v) = (f,0),

it follows that u solves the Weak Form (W).

3. Is immediate.

11.1 RITZ -GALERKIN METHOD

This is a classical approach which we exploit to fined “discrete” ap-
proximation to the problem Weak Form (W) / Minimization Form
(M). We look for a solution ug in a finite dimensional subspace S of
Dy, such that ug is an approximation to the solution of the continuous
problem,

Us = U1 + Uy + ... + Uny.
Discrete Weak Form (Ws):
Find us € S = span{$1, ¢2, ..., pn}, n < oo such that

a(us,v) = (f,0),

U Ug = urPr + oo + ... + Uy y.
Similarly the
Discrete Variational/Minimization form (Mj):

Find ug € S = span{¢1, ¢z, ..., pn}, n < co that satisfies

F(ug) < F(v) allves,
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11.1 Ritz -Galerkin Method

where

v e Dg.
Theorem 11.1.1. Given f € Ly([0,1]), then (Ws) has a unique solution.

Proof. We write ug = Y1 u;$;(x) and look for constants u;, j = 1,...,n
to solve the discrete problem. We define

A= (Ag) = (a9 )} = [ p()6i8) + a0l
and )
F= 1B} ={(f,9)} ={] fouix)
Then we require

a(ug,v) = a(iujcpj(x),v) =(f,v)allves

Hence, for each basis function ¢; € S we must have,

a(us, ¢;) = a(;u]-(p]-(x),qbi) =(f,¢)alli=1,.,n€S

this gives the matrix,

[ a(pr,¢1) . algndr) | [ m (f, ¢1)

0@ g0) o a@udn) | Lun ] | (Fgw) |

which can be written as,

Ai=F

Hence us is found by the solution to a matrix equation. We now

show existence/uniqueness of the solution to the algebraic problem.

We show by contradiction that A is full-rank ie that the only solution
to Aii =0is a1 = 0.

Suppose that there exists a vector & = {v;} # 0 such that A = 0 and
construct v(x) = Y7 v;¢; € S. Then

At=0 < Z]ll (P]',(Pk)?)j = a(v,(pk) =0all k
& Yia(v,¢)vj = a(v, L) = a(v,0) =0

< =0

Therefore a contradiction. O
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11.2 Finite Element

Classically, in the Ritz-Galerkin method, the basis functions are
chosen to be continuous functions over the entire interval [a,b], for
example, {sin(mx),cos(mx)} give us trigonometric polynomial ap-
proximations to the solutions of the ODEs.

11.2 FINITE ELEMENT

We choose the basis functions {¢;}} to be piecewise polynomials with
compact support. In the simplest case ¢; is linear. We divide the
region in to n intervals or “elements”,

a=x<xn<..<x,=b
and let E; denote the element [x;_1,x;], h; = x; — x;_1.
Definition Let S" C D be the space of functions such that v(x) €
[0,1], v(x) is linear on E; and v(a) = v(b) =0 ie
S" = {v(x) : piecewise linear on [0,1],v(a) = v(b) = 0}

The basis functions ¢;(x) for S" are defined such that ¢;(x) is linear
on El‘, Ei+1 and ([)l(x]) = (51]

25

Fa

1,5

1.0 Fil p

0.5 ffjf\<,+\+

-

0.0 +/ +’ >
-0.5 12 i1 : i+1
~1.0
—1.5

0 i 4 &

Figure 11.2.1: Hat functions ¢; form a basis for the space S"

We now show that the hat functions ¢; form a basis for the space
sh (Figure .

Lemma 11.2.1. The set of functions {¢;}" is a basis for the space S".

Proof. We show first that the set {¢;}] is linearly independent. If
Y1 cipi(x) = 0 for all x € [a,b], then taking x = x;, implies ¢; = 0 for
each value of j, and hence the functions are independent.

To show S" = span{¢;}, we only need to show that

v(x) =01 =Y vjp;, allv(x) € "
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11.2 Finite Element 163

This is proved by construction. Since (v — vy) is linear on [x;_1, x;]
and v —v; = 0 at all points x;, it follows that v = v; on E;. O
We now consider the matrix A7l = F in the case where the basis
functions are chosen to be the ”"hat functions”. In this case the ele-
ments of A can be found We have

¢ =0,¢; =0, for x & [x;_1,%11) = E:|JEir1,

where , 1
X —Xi1 ’
= — = — —Xi—1), P= —, E-.
(Pz X — X1 hi (x Xi 1) (Pz hi on L;
and
/ -1

¢; = —, on Ejyq.

Xiy1 — X 1
a - (xi+1 - x)/ h
i+1

$i =
Xip1 —Xi Mg

Therefore we have the elements of the matrix A

(o
f ilz —xi1)%q(x dx—i—f o % xip1 — x)%q(x)dx,
Ajiv1 = fxfiﬂ ;le p(x)dx + fxm % Xit1 — x)(x — x;)q(x)dx,

_ -1 fin 1
Aji1 = xllth Jdx + [ 55 (x

—x)(x —x;_1)g(x)dx,

and

11.2.1  Error bounds of Finite Element methods

Lemma 11.2.2. Assume ug solves (Wg). Then
0, forallx € S

a(u—ug,w) =
Proof. Given that
a(us,w) = (f,w),
and
a(u,w) = (f,w),

for all w € S. Since a is bilinear, taking the differences gives

a(u—ug,w) = 0.
O

The error bounds we are interested in will be in term of the energy

norm, 1
|[o]|e = [a(v,v)]2



11.2 Finite Element

for all v € Dr. The function satisfies the properties:
laol|e = allalle, o +z[le < [lofle + 2]
Theorem 11.2.3. To show ug is the best fit we show that

= sl = minu o1l

Proof. By the Cauchy -Schwarz Lemma, we have |a(u,v)| < ||u||g||v]|g-

Let w = ug — v € S. Using the previous lemma we obtain
llu—us||2 =a(u—us,u—us)

a(u —us,u —us) +a(u —us, w)

a(u—us,u —us+w) =a(u —us,u — )

[ = us|[el[u — ol[e.

VAVARVANI

If ||u — ug||g = 0, then the theorem holds. Otherwise
min |[u — v|[g < |[u — ug|| < min|[|u —ol[E,
the result follows. O
Theorem 11.2.4. Error bounds
[l — us|[g < Chl[u"|]eo

where C is a constant.

Proof. First from the previous theorem we have that

||u —us||g = min |[u —v||g < |[u —u;l|e
veS

We look for a bound on ||u — u;||g, where
u;(x) = ZIZ]'QD]', 11]' = M(X]').
)

We assume that

Ug (X) = Zuj<pj
)

where u = {u;} solves Au = F. We define ¢ = u — uj. Since u; € S
implies that uj is piecewise linear, then u}' — 0. Therefore ¢’ = u'.
Looking at the subinterval [x;, x;11] The Schwarz inequality yields
the estimate

2 < [ 12z [ (@)
< (v—x) [ (@)

i

<ni [ @2
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11.2 Finite Element

and thus

leli2 < hy [ @))%z < BRI
Similarly,

(€2 < [ 1 [ @)z
< (x—x) / (@)
<h/ &))2de

and thus

IR < [ @)z <m I

Finally we also have

a(ee) = [T (p()[e]? + q(x)[e(x)]*)dx
< plleo [3 e T? + llglloo [ le(x))dx
< ||P||c>ohz||e”||2 + llalleok2] €' 2
< [1plleoh? e 113 + 14l Lo e[
< C[[u’[[3

||t = us|le = min{lu —olle < |Ju—ul[p < Chl[u’ [

where h = max{h;}. O
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PROBLEM SHEET

1. a) State the 3 classes and conditions of 2nd order Partial Dif-
ferential Equations defined by the characteristic curves.

b) Given the non-dimensional form of the heat equation

u_#u
ot ox2’
supply sample boundary conditions to specify this prob-
lem.
Write a fully implicit scheme to solve this partial differen-
tial equation.
c) Derive the local truncation error for the fully implicit method,
for the heat equation.

d) Show that the method is unconditionally stable using von
Neumann’s method.

2. a) State the 3 classes and conditions of 2nd order Partial Dif-
ferential Equations defined by the characteristic curves.

b) Given the non-dimensional form of the heat equation

u _#u
ot ox2’
supply sample boundary conditions to specify this prob-

lem.
Write an explicit scheme to solve this partial differential

equation.
c) Derive the local truncation error for the explicit method,
for the heat equation.

d) Show that the method is consistent, convergent and stable
for h—kz < %, where k is the step-size in the ¢ direction and h
is the step-size in the x direction.

3. a) State the 3 classes and conditions of 2nd order Partial Dif-
ferential Equations defined by the characteristic curves.

b) Given the non-dimensional form of the heat equation

au _dPu

ot  ox2’
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11.2 Finite Element

supply sample boundary conditions to specify this prob-
lem.

Write an the Crank-Nicholson method to solve this partial
differential equation.

¢) Derive the local truncation error for the Crank-Nicholson
method, for the heat equation.

d) Show that the method is unconditionally stable using von
Neumann’s method.

a) Approximate the Poisson equation
~V2U(xy) = flxy)  (ny) € Q=(0,1)x (0,1)
with boundary conditions
U(x,y) = g(x,y) (x,y) € 6Q2 — boundary

using the five point method. Sketch how the finite differ-
ence scheme may be rewritten in the form Ax = b, where
A is a sparse N2 x N2 matrix, b is an N> component matrix
and x is an N? component vector of unknowns. (Assume
your 2d discretised grid contains N components in the x
and y direction).

b) Prove (DISCRETE MAXIMUM PRINCIPLE). if V2V, > 0
for all points (x;,y;) € ), then

max V; < max Vj
(xi,y;) €Yy, (xi,y;) €00y,

If V%lVi]- < 0 for all points (xi,y]-) € (), then

min V; > min Vj;
(X,‘,y]')EQh (xi,yj)Eth

c) Hence prove:
Let U be a solution to the Poisson equation and let w be
the grid function that satisfies the discrete analog

—Vﬁwi]‘ = fij for (X,',]/]') e Yy,

Wij = gij for (xi,yj) € 9Q)y,.

Then there exists a positive constant K such that

U —w||q < KMK?
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11.2 Finite Element 168

where

Pu
ayt

otu
9x3dy

o*u
ox4

YAy}

-

[e0] }
You may assume:
Lemma

If the grid function V' : O, [J0Q), — R satisfies the bound-
ary condition V;; = 0 for (x;,y;) € 90, then

7
[ee] [oe]

1
Vlla < glI73VIln

5. a) For a finite difference scheme approximating a partial dif-
ferential equation of the form

ou ou
g——a$+f(x,t), x€R, t>0

U(x,0) = Up(x), x€R
define what is meant by:
i. convergence,
ii. consistency,
iii. stability.
b) Describe the forward Euler/centered difference method for

the transport equation and derive the local truncation er-
ror.

c) Define the Courant Friedrichs Lewy condition and state
how it is related to stability.

d) Show that the method is stable under the Courant Friedrichs
Lewy condition using Von Neumann analysis, you may as-
sume f(x,t) = 0.

6. Consider the second order differential equation

dz—u+u—x
dx? N

with boundary conditions

a) Show that the solution u(x) of this equation satisfies the

weak form
1 du dov
/0 dx <—dxdx—|—uv—xv) =0



11.2 Finite Element

for all v(x) which are sufficiently smooth and which satisfy

b) By splitting the interval x € [0,1] into N equal elements of

size h, where Nh = 1, one can define nodes x; and finite
element shape functions as follows

X = ih
0 0<x<uxi1
X—Xi1
—= x_ <x <y
Qbi(x) _ xH.Iffx i—1 >~ A
== xS x <X
0 xip1 <x <1

A finite element approximation to the differential equation
is obtained by approximating u(x) and v(x) with linear
combinations of these finite element shape functions, ¢;,

where
N-1

up = Y wighi(x)

i=1
N-1

Op = Z% Bigi(x)
iz

Show that the equation which results from this approxima-
tion has the form
Ka =F

where K'is an N —1 x N — 1 sparse matrix, F isan N — 1
component vector and « is an N — 1 component vector of
unknown co-efficient «;.

What structure does the matrix K have? Evaluate the first
component of the main diagonal of K.
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