

Virtual Reality and Neuroimaging to Investigate the Neuronal Process while Walking

John S Butler

School of Mathematical Sciences Technological University Dublin

My background

- Numerical Analysis (Trinity College Dublin, PhD work)
 - Robust Numerical methods of Prandtl Boundary Layer Problems
- Self-motion Perception (Max Planck Institute for Biological Cybernetics)
 - Walking
 - Driving
- Unisensory and Multisensory processing
 - Developmental Disorders (Albert Einstein College of Medicine)
 - Autism Spectrum Disorder, Niemann Pick Type C
 - Movement Disorders (Trinity Centre for Bioengineering)
 - Parkinson's Disease
 - Dystonia

Talk Overview

- 1. Introduction
- 2. Distance Perception
- 3. Feasibility of neural recordings while moving
- 4. Motor preparation in Parkinson's disease
- 5. Cognitive flexibility of visual load while walking

Talk Overview

- Introduction
 I. Virtual Reality
 - II. Sensory information
- 2. Distance Perception
- 3. Feasibility of neural recordings while moving
- 4. Motor preparation in Parkinson's disease
- 5. Cognitive flexibility of visual load while walking

Virtual Reality

Sensory information

- Hearing
- Sight
- Taste
- Smell
- Touch
- Vestibular
- Proprioception

Self-motion

- Self-motion
 - WalkingDriving
- Cues for Self-motion
 - Visual
 - Vestibular
 - Proprioception
 - Etc.

Body motion Cues

- Vestibular
 - Eye movements
 - Heading
 - Acceleration
- Proprioception
 - Somatosensory
 - Joints

Optic flow

Behavioural

- Distance perception
- Heading
- Neurophysiology
 Vection
 - hFMRI (MT+)
- Heading
 - MST

Talk Overview

1. Introduction

2. Distance Perception

- 3. Feasibility of neural recordings while moving
- 4. Motor preparation in Parkinson's disease
- 5. Cognitive flexibility of visual load while walking

How a Mathematician starts with the Brain

The Experiment

- Visual
- Proprioception (novision)
- Combined
- 4m, 6m, 8m, 10m

Study 1

- Change the speed of the proprioceptive
 × 0.7, × 1.4
- Leaking Integrator • $\frac{dp}{dx} = -\alpha p + k$
- α leak rate
 k-sensory gain
- 20 participants

Study 1

Maximum Likelihood Estimation

$$COM = w_{VIS}VIS + w_{PROP}PROP$$

Observed

 $w_{VIS} + w_{PROP} = 1$

$$w_{Vis} = \frac{\mu_{COM} - \mu_{PROP}}{\mu_{Vis} - \mu_{PROP}} \qquad \qquad w_{PROP} = \frac{\mu_{COM} - \mu_{PROP}}{\mu_{Vis} - \mu_{PROP}}$$

Predicted

$$\widehat{COM}^{Gain} = w_{VIS} VIS^{Gain} + w_{PROP} PROP$$

Study 1

Summary I

- This study supports previous findings that indicate a dominant role for body-based cues over dynamic visual flow in the estimation of travelled distances.
- The combination of visual and body based cues for walking is partially predicted by a Maximum Likelihood Estimation model

Talk Overview

- 1. Introduction
- 2. Distance Perception
- 3. Feasibility of neural recordings while moving
 - 1. Motion Platform
 - 2. Walking
- 4. Motor preparation in Parkinson's disease
- 5. Cognitive flexibility of visual load while walking

Virtual reality setups

Neuronal Correlates of Self-Motion

- Behavioural tasks
 - Open loop
 - Closed loop
- Imaging techniques
 - fMRI
 - MEG
 - TMS
 - Imaging in non-human primates

Benefits of using EEG

- Systems level snapshot
- Attention deployment
- Temporal resolution
- Light weight
- Real world environment
- Online feedback loop

The cusp of a wave

HARDWARE

 Advances in motion platform design

 Advances in electrodes design

SOFTWARE

- Advanced analysis techniques
 - Independent Component Analysis
 - Source localisation techniques
 - Mobile Brain Imaging (MoBi – Scott Makeig)
- Individual data analysis
 - Bootstrapped Statistics

Stewart Platform

6 actuator legs6 degrees of freedom

Electroencephalography (EEG)

Frequency decomposition

(b)

 Alpha waves discovered

Feasibility of EEG on a Stewart platform

PARTICIPANT ARTIFACTS

- Eye movements
- Laughing
- Blinking
- Neck movement

EXTERNAL ARTIFACTS

Phones

- Screens
- Headphones
- Plugs

The Movement Paradigm

- Four levels of motion
 - Stationary
 - Idle
 - Slow 0.5 hrtz at 0.25mG
 - Fast 0.5 hrtz at 0.75mG

Results - Control Experiment

EEG can be conducted on a moving motion platform

Event-Related Potential (ERPs)

Independent Component Analysis

ICA decomposition

Jung T-P, Makeig S, Humphries C, Lee TW, McKeown MJ, Iragui V, and Sejnowski TJ (2000)

Fully Automated Statistical Thresholding for EEG artefact Rejection

Fully Automated Statistical Thresholding for EEG artefact Rejection

Nolan, Whelan, Reilly (2010)

The Oddball Paradigm

- Can we get an EEG signal while moving people?
- Visual P3 paradigm
 - 80% Standard
 - 20% Target
- Four levels of motion
 - Stationary
 - Idle
 - Slow 0.5 hrtz at 0.25mG
 - Fast 0.5 hrtz at 0.75mG

SSSTSSSSTSSSTSST

Results - Control Experiment

A difference was shown between the standard and target.

Nolan, Whelan, Foxe, Bulthoff, Reilly, Butler (2009)

EEG while Walking

EEG while Walking

EEG while Walking

Signal Issues with Walking

Adapted from Wagner et al. 2016, J. Neuro

Response Inhibition Task

• Hit:

- correct response in a go trial
- Correct Rejection:
 - successful withholding of a response in a nogo trial
- False Alarm:
 - Executing a response in a *nogo* trial

Feasible to acquire usable EEG data

Highly similar early evoked response and power spectrum point to the feasibility of acquiring EEG while walking

Feasible to acquire usable EEG data

34th Annual International Conference of the IEEE EMBS San Diego, California USA, 28 August - 1 September, 2012

De Sanctis, Butler*, Green, Snyder, Foxe (2012)

Talk Overview

- 1. Introduction
- 2. Distance Perception
- 3. Feasibility of neural recordings while moving
- 4. Motor preparation in Parkinson's disease
- 5. Cognitive flexibility of visual load while walking

Parkinson's Disease

- Parkinson's disease (PD): neurodegenerative disorder characterised by loss of dopaminergic signalling in the basal ganglia
- Motor symptoms
 - Tremor
 - Bradykinesia
 - Rigidity
 - Postural disturbance
 - Freezing of gait
- Non-motor features: constipation, depression, anxiety, cognitive impairment, autonomic instability, hallucinations and impulse control disorders.
- Treatment: dopamine replacement or deep brain stimulation

Freezing of Gait

- Intermittent gait disturbance feet glued to floor
 - Most apparent in <u>late-stage</u> Parkinson's disease
- Affects up to 60% patients with Parkinson's disease
- Causes falls
- Poorly understood
 - No effective treatments
 - Difficult to study
 - Heterogeneous

Dual Task

Oddball task while Stepping in Place

	FOG+	FOG-	Control	Standard (80%)
			S	
Ν	8	10	7	Target (20%)
Age (years)	65.7	62.5	25	8 (, , ,)
Gender (M:F)*	7:1	4:6	3:4	Button Response
H&Y stage	2.6	2.3		1
Disease Duration	12.3	7.0 (3.6)		1000ms epochs
(years)*	(8.36)			_
UPDRS III	28.6	29.1		128 channels
MOCA	24.0	26.1		
FAB*	14.9	17.3		

Behavioural

Sensory Motor Decision Making

Laplacian (Second Order Spatial Derivative)

Standard vs Target

Relatively clean data for both sitting and stepping in place

Standard vs Target

Relatively clean data for both sitting and stepping in place

Automatic (N2) and decision (CPP) response

Automatic response (N2) is absent in FOG+ while stepping in place

Readiness Potential

Earlier onset and larger motor response for the FOG+ group

Summary III

- With the added load of stepping in place
 FOG+ response times were slowed
- Absence of N2 suggests that early "automatic" resources are being re-allocated
- The larger and earlier onset of the LRP while walking illustrates the recruitment of resources to perform the task

Butler*, Fearon, Kilane, Waechter, Reilly, Lynch (2017)

Talk Overview

- 1. Introduction
- 2. Distance Perception
- 3. Feasibility of neural recordings while moving
- 4. Motor preparation in Parkinson's disease
- 5. Cognitive flexibility of visual load while walking

Visual Load

- Participants: 16 young adults (mean age = 26 years)
- Self-selected treadmill walking speed (average = 3.9 km/h)
- Experimental conditions
 - Cognitive Load:
 - Engage in task
 - Walking only (do not engage in task)
 - Visual Load:
 - Static star field
 - Optic flow no perturbations (NOP)
 - Optic flow mediolateral perturbations (MLP)

Methods: ICA and clustering analysis

Adapted from Wagner et al. 2016, J. Neuro

ICA artifact rejection

Artifactual Components

pop_prop() - Component 4 properties _ × pop_prop() - Component 15 properties П X Edit View Insert Tools Desktop Window Help File Edit View Insert Tools Desktop Window Help IC4 IC4 activity (global offset -0.004) IC15 IC15 activity (global offset 0.023) 800 700 800 700 600 600 500 400 2.6 500 400 300 200 100 300 200 100 -2.6 200 400 600 0 200 400 600 Time (ms) 0 Time (ms) Activity power spectrum Power 10*log₁₀(µV²/Hz) ower 10*log $_{10}(\mu V^2/Hz)$ Activity power spectrum 0-0 / -10 -10--20 -20 10 20 30 40 50 Frequency (Hz) 10 20 30 40 50 Frequency (Hz) ACCEPT HELP OK Cancel pop_prop() - Component 11 properties X ACCEPT HELP OK File Edit View Insert Tools Desktop Window Help IC11 IC11 activity (global offset -0.009) 800 700 600 500 400 300 200 -3.4 0 200 400 600 Time (ms) Power 10*log₁₀(µV²/Hz) Activity power spectrum 07

20

10

30

Frequency (Hz) ACCEPT

50

OK

40

HELP

-10

-20

Cancel

Brain Components

Methods: ICA and clustering analysis

Adapted from Wagner et al. 2016, J. Neuro

Cortical IC Clusters

Hypotheses for Power Spectral Density

- Power (amplitude) reduction or desynchronization, in 8-30Hz -> cortical excitability before and during movements
 - Hypothesis: decreased mu and beta power with increased sensory load (optic flow vs. static)
- 2. Visual processing leads to reduced alpha power over occipital regions
 - Hypothesis: Sensory load and cognitive load (processing letters vs. not processing letters) will lead to decreased power in the alpha (8-14Hz) band over occipital regions
- 3. Increased alpha power over parietal regions is linked to attentional mechanisms to suppress task-irrelevant information
 - Hypothesis: sensory load, particularly unreliable visual scene motion (ML perturbations) will drive alpha power over parietal cortex

PSD: frontal (SMA & ACC) Clusters

Malcolm, Foxe, Butler*, Molholm, DeSanctis (2018)

Summary IV

- One of the first studies that has attempted to understand cortical underpinnings of gait control under conflicting sensory demands
- ICA and clustering approach helped define a distributed network of sources responsive to sensory and cognitive load
- Optic flow induced changes in gait & posture may be used as a tool to assess cortical underpinnings of dynamic stability

Conclusion

- Simple models can explain and predict selfmotion
- EEG can be collected during active and passive motion
 - Meaningful results that further our understanding of self-motion

Future Directions

Thank you

<u>Albert Einstein College of Medicine</u> Adam Snyder **Brenda Malcolm Pierefilipo DeSanctis** John Foxe

<u>Trinity College Dublin</u> **Hugh Nolan** Robert Whelan Richard Reilly

Max Planck Institute for Biological Cybernetics Jennifer Campos Heinrich Bülthoff

<u>The Mater Misericordiae University Hospital</u> **Conor Fearon** Timothy Lynch

Albert Einstein College of Medicine

MPI FOR BIOLOGICAL CYBERNETICS

Any questions

PSD: Occipital alpha

PSD: Right parietal alpha

Vestibular Oddball

- Vestibular Conditions
 - Diagonal Left Target
 - Diagonal Right Target
- Vestibular P3 paradigm
 - 80% Standard (320 sweeps)
 - 20% Target (80 sweeps)
- 15 participants
- 128 scalp channels

The aging brain shows less flexible reallocation of cognitive resources during dual-task walking: a mobile brain/body imaging (MoBI) study

Age	Young	Old
Range	21.8-36.1	57.7-71.0
Mean	27.2	63.9
SD	4.6	4.0

ERP - Young

ERP - Old

N2 topographical distribution

P3 topographical distribution

Vestibular Oddball

Procedure

A neuronal marker for vestibular change detection

Results- Vestibular P3

 Statistical difference between the standard and target

P3 distribution

Target vs Standard

Target topographic scalp distribution is similar to the typical P3 distribution for other sensory modalities

Scalp Distribution

 Target topographic scalp distribution is similar to the typical P3 distribution for other sensory modalities

BOOTSTRAP

Individual Participant data

Summary II

This is the first time vestibular heading change detection has been shown to elicit a P3 component.

Nolan, Butler, Whelan, Foxe, Bulthoff, Reilly (2012)

Response Inhibition Task

Task

- Go/Nogo Response Inhibition Task
- NoGo: repetition of the same picture
- Stimulus presentation rate 1/per sec
- Go/Nogo = 80/20%
- Conditions
 - Sitting
 - Walking Slow (2.4 km/h)
 - Walking Fast (5 km/h)

Methods

Participants

- Young Adults (n=16) mean age = 25.6 years
- Average walking speed: 3.9 km/hr (range: 3.2 4.5)

<u>6 Experimental Conditions</u>

- Task Load (2) x Optic Flow (3)
- 3 blocks of each condition

- Task:
 - Go/No-Go probability = 80%/20%
 - Letter presentation = 400ms
 - Random SOA : 600-800ms
- Optic Flow
 - static (control condition?)
 - steady/no perturbation
 - mediolateral perturbations

oad	Sensory Load: Optic Flow Perturbation (relative to walking speed/direction)		
Cognitive L	Static/No-Task	Congruent/No-Task	Incongruent/No-Task
	Static-Task	Congruent/Task	Incongruent/Task

Summary IV

- Younger adults adjust gait and cognitive control when presented with a dual task situation
- Healthy older adults show a lack of flexibility,
 both in terms of adjusting physical behavior and in reconfiguring cognitive control mechanisms at the neural level.

Binocular Condition

Stereoscopic Condition

Stereoscopic Condition

Reproducible nature of result

A subset of the original participants were re-run and exhibited identical results

Summary

- The presence/absence of stereoscopic visual information can impact the extent to which visual and vestibular cues are integrated during heading perception.
 - This was reproducible within participants

Talk Overview

Passive Heading detection

- 1. The role of Stereo cues
- 2. Conflict of information
- 3. Neural correlates of heading detection change
- Active tasks
 - 4. Walking
 - 5. Neural recordings while walking

Visual-Vestibular Integration for Heading (conflict)

Why introduce a conflict?

 By introducing a conflict we can see if there is a breakdown of the combination of sense

• We can calculate the weights given to each cue

The logic of conflicts

Equally weighted

Verifiar weighted more

Maximum Likelihood Estimation

$$\widehat{S}_{Vis-Vest} = w_{Vis} \widehat{S}_{Vis} + w_{Vest} \widehat{S}_{Vest}$$

Observed

Predicted $\hat{w}_{Vis} = \frac{1/JND_{Vis}^2}{1/JND_{Vis}^2 + 1/JND_{Vest}^2}$

Spatial Conflict

- Conditions
 - 1 Vestibular alone
 - One Standard
 - $\Theta = 0^{\circ}$
 - 4 Visual alone
 - Four standards
 - $\Theta = \pm 6^{\circ}, \pm 10^{\circ}$
 - 4 Visual-vestibular
 - One Standard
 - $\Theta = 0^{\circ}$
 - Four Offset
 - $\Delta = \pm 6^{\circ}, \pm 10^{\circ}$

Optimal reduction in variance

The combination of visual and vestibular cues observe an optimal rule of integration

The weights are biased towards the vestibular cue

Introduction of a Prior

$$\widehat{S}_{Vis-Vest} = w_{Vis} \widehat{S}_{Vis} + w_{Vest} \widehat{S}_{Vest} + w_{Prior} \widehat{S}_{Prior}$$

$$JND_{Vis-Vest}^{2} = \frac{1}{1/JND_{Vis}^{2} + 1/JND_{Vest}^{2} + 1/JND_{Prion}^{2}}$$

$$w_{Vis} = \frac{1/JND_{Vis}^2}{1/JND_{Vis}^2 + 1/JND_{Vest}^2 + 1/JND_{Prior}^2}$$

Bayesian Model

Summary results

- Participants exhibited a statistically optimal reduction of variance under combined cue conditions.
- Performances in the unimodal conditions did not predict the weights in the combined cue conditions.
 Therefore, we conclude that visual and vestibular
- Therefore, we conclude that visual and vestibulat cue combination is not predicted solely by the reliability of each individual cue but rather, there is a prior which leads to a higher weighting of vestibular information in this task.

Reproducible nature of result

Reliability

Reliability

Information Conflict

- Conditions
 - Visual
 - Raised cosine
 - Constant velocity
 - Vestibular
 - Raised cosine
 - Visual-vestibular
 - Raised cosine velocity
 - Constant velocity (conflict)

Visual motion Profile and heading estimation

Objective

To investigate if the velocity and acceleration play a role in visual heading discrimination

PREDICTION 1

The constant velocity profile will give more reliable results as it is highly predictable

PREDICTION 2

The more "natural" raised cosine profile is more reliably as we are more commonly exposed to it

Results

The raised cosine profile is gives more reliable estimates of visual heading

Predictions for the discrepant condition

Objective

To investigate the combination of visual and vestibular information under different visual motion profile conditions

PREDICTION 1

The visual and vestibular information do not combine in an optimal fashion

PREDICTION 2

Combination of senses is not dependent on the motion profile

Effect of visual motion profile on heading discrimination

Combination of Senses

Unimodal results

Multisensory Results

Conclusion

- Visual motion is not just a snap shot but an accumulation of information
 - The more natural profile yielded the more accurate heading discrimination
- Visual and Vestibular cues combine in an optimal fashion even when there is an information conflict

Visual-Vestibular Integration for Heading

