Mathematics and the Brain

John S Butler
School of Mathematical Sciences
Dublin Institute of Technology

My background

- Numerical Analysis (Trinity College Dublin, PhD work)
- Robust Numerical methods of Prandtl Boundary Layer Problems
- Self-motion Perception (Max Planck Institute for Biological Cybernetics)
- Walking
- Driving

- Unisensory and Multisensory processing
- Developmental Disorders (Albert Einstein College of Medicine)
- Autism Spectrum Disorder, Niemann Pick Type C
- Movement Disorders (Trinity Centre for Bioengineering)

- Parkinson's Disease
- Dystonia

The Brain

What does the Brain do?

Decision Making

Emotions

Memory

Speech

Reactions

- Sensory processing
- Visual and Auditory Illusions
- Fight or flight

Dreams

- Movement

The Brain Song

The Brain

Neocortex

Cortical Columns

Cortical Layers

Columns of Neurons

How do Neurons communicate

How does a Neuron generate action potentials

How do we investigate the brain

How do we record from Neurons?

Single Cell Recording

Multiple repetitions

How do we record from Neurons?

Hand reaching direction

Tuning curve of a motor cortical neuron B

How do we record from cortical

 columns

Magnetic Resonance Imaging (MRI)

How do we record from cortical columns

Electroencephalogram (EEG)

M.

Event Related Potentials

How do we study behaviour

Questionnaires

- Reaction Time
- Response Time
- Choice
- Memory task

Opinions

- Virtual Reality

Virtual Reality

How much Maths do we know?

What Maths do we know

- Add
- Subtraction
- Multiply
- Trigonometry
- Angles
- Probability
- Complex Numbers
- Differentiation

Primary School

- Secondary School
- Integration
- Differential Equations
- Bayesian Statistics

University

What Maths does our brain use

- Add
- Subtraction
- Multiply
- Trigonometry
- Angles
- Probability
- Complex Numbers
- Differentiation

Neurons

Collection of neurons

- Integration
- Differential Equations
- Bayesian Statistics

How do we model the Brain?

How a Mathematician starts with the Brain

What Maths do we need to model the

brain

- Add
- Subtraction
- Multiply
- Trigonometry
- Angles
- Probability
- Complex Numbers
- Differentiation
- Integration
- Differential Equations
- Bayesian Statistics

Mathematics and Neuroscience

Analyse and Model

- Chemical reactions (micro)
- Neuronal Activity (micro)
- Cortical Activity (mezzo)
- Behaviour (macro)
- Goal to understand
- Development
- Combination of sensory signals
- Movement
- Learning
- Diseases

Mathematics and Neuroscience

Analyse and Model

- Chemical reactions (micro)
- Neuronal Activity (micro)
- Cortical Activity (mezzo)
- Behaviour (macro)

Goal to understand

- Development
- Combination of sensory signals
- Learning
- Disease

Multisensory Integration

Neocortex

Sensory information

Taste

- Smell
- Hearing
- Touch
- Sight
- Vestibular

Hearing

Audio information

Multisensory Integration

- Speech (Audio, Visual)
- Eating (Visual, Auditory, Smell)
- Rainbow (Visual, Touch)
- Cooking (Visual, Touch, Smell)
- Music (Auditory, Touch, Vestibular)
- Walking (Visual, Vestibular, Touch, Auditory)
- Everything is multisensory

The Development Trajectory of Multisensory Integration

Childhood

Linear

Learns from more accurate modality
Uses Fastest modality

Late Adulthood

Integration

Optimal Integration
Faster Reaction times

Super
Integration

Faster Reaction Times
Susceptible to illusions

Self-motion

Self-motion

- Walking
- Driving

Cues for Self-motion

- Visual
- Vestibular
- Touch
- Audio
- Etc.

Optic flow (visual)

Behavioural

- Relative distance perception
- Heading
- Speed

Function

- Balance
- Object motion
- Self-motion

Disorders

- Monopic vision

Inertial (vestibular)

- Otholiths
- Linear acceleration
- Semi-circular Canals
- Rotational velocity
- Function
- Eye movements
- Heading
- Gravity
- Disorders
- Vertigo
- Motion sickness
- Falls

Vestibular

Eye and Head Movements

Vestibular illusions

Falling

Virtual reality setup and stimuli

Combination of Senses

Possible Models

Visual-Vestibular Integration

for Heading

Visual-Vestibular Integration for Heading (conflict)

Why introduce a conflict?

- By introducing a conflict we can see if there is a breakdown of the combination of sense
- We can calculate the weights given to each cue
- To model the observed combined response from the visual and vestibular response

The logic of conflicts

Equally weighted

Vestibular weighted more

Vision weighted more

Individual participant analysis

Incongruent

Vis-Vest
Vestibular

Combination of Senses

WINNER TAKES ALL

COMBINED the better sense

OPTIMAL

$$
J N D_{V i s-V e s t}=\sqrt{\frac{J N D_{V i s}^{2} J N D_{V e s t}^{2}}{J N D_{V i s}^{2}+J N D_{V e s t}^{2}}}
$$

Maximum Likelihood Estimation

$$
\widehat{S}_{V i s-V e s t}=w_{V i s} \hat{S}_{V i s}+w_{V e s t} \hat{S}_{V e s t}
$$

Observed

$$
w_{V i s}=\frac{P S E_{V i s}-V_{\text {ves }}-P S E_{\text {Vest }}}{P S E_{V i s}-P S E_{V e s t}}
$$

Predicted

$$
\hat{w}_{V i s}=\frac{1 / J N D_{V i s}^{2}}{1 / J N D_{V i s}^{2}+1 / J N D_{\text {Vest }}^{2}}
$$

Observed vs Predicted

Summary

The vestibular system is useful

- Sensory information combines in an optimal fashion
- This has also been shown at the neuronal level
- This model extends to most sensory combinations
- Audio-visual
- Visual-touch
- Audio-touch
- Helps explain possible reasons for falls in the elderly

How far did I walk?

$\frac{d p}{d x}=-\alpha p+k$

Any questions

Institiúid Teicneolaíochta Bhaile Átha Cliath
Dublin Institute of Technology

Scoil na nEolaíochtaí Matamaiticiúla School of Mathematical Sciences

