Mathematics and the Brain John S Butler School of Mathematical Sciences Dublin Institute of Technology

My background

- Numerical Analysis (Trinity College Dublin, PhD work)
 - Robust Numerical methods of Prandtl Boundary Layer Problems
- Self-motion Perception (Max Planck Institute for Biological Cybernetics)
 - Walking
 - Driving
- Unisensory and Multisensory processing
 - Developmental Disorders (Albert Einstein College of Medicine)
 - Autism Spectrum Disorder, Niemann Pick Type C
 - Movement Disorders (Trinity Centre for Bioengineering)
 - Parkinson's Disease
 - Dystonia

The Brain

What does the Brain do?

Decision Making

- Reactions
- EmotionsSensory processing
- Memory
- Speech
- Dreams
- Movement

- Visual and Auditory Illusions
- Fight or flight

The Brain Song

The Brain

Neocortex Homo Sapien Brain Social Relationships (Dignity, Respect, Status)

Limbic Mammalian Brain Emotional Connection

Brainstem Reptilian Brain Safety

Spinal Column & Peripheral Nervous System Worm Brain Sensation and Motion

Neocortex

Cortical Columns

Columns of Neurons

How do Neurons communicate

How does a Neuron generate action potentials

How do we investigate the brain

How do we record from Neurons?

Multiple repetitions

How do we record from Neurons?

s (movement direction in degrees)

How do we record from cortical columns

Magnetic Resonance Imaging (MRI)

functional MRI(fMRI)

How do we record from cortical columns

Electroencephalogram (EEG)

mmmmmm

Event Related Potentials

FOG-

How do we study behaviour

- Questionnaires
- Reaction Time
- Response Time
- Choice
- Memory task
- Opinions
- Virtual Reality

Virtual Reality

How much Maths do we know?

What Maths do we know

- Add
- Subtraction
- Multiply
- Trigonometry
- Angles
- Probability
- Complex Numbers
- Differentiation
- Integration
- Differential Equations
- Bayesian Statistics

Primary School

Secondary School

University

What Maths does our brain use

- Add
- Subtraction
- Multiply
- Trigonometry
- Angles
- Probability
- Complex Numbers
- Differentiation
- Integration
- Differential Equations
- Bayesian Statistics

Neurons

Collection of neurons

Cortical areas

How do we model the Brain?

How a Mathematician starts with the Brain

What Maths do we need to model the brain

- Add
- Subtraction
- Multiply
- Trigonometry
- Angles
- Probability
- Complex Numbers
- Differentiation
- Integration
- Differential Equations
- Bayesian Statistics

Mathematics and Neuroscience

- Analyse and Model
 - Chemical reactions (micro)
 - Neuronal Activity (micro)
 - Cortical Activity (mezzo)
 - Behaviour (macro)
- Goal to understand
 - Development
 - Combination of sensory signals
 - Movement
 - Learning
 - Diseases

Mathematics and Neuroscience

Analyse and Model

- Chemical reactions (micro)
- Neuronal Activity (micro)
- Cortical Activity (mezzo)
- Behaviour (macro)
- Goal to understand
 - Development
 - Combination of sensory signals
 - Learning
 - Disease

Multisensory Integration

Neocortex

Sensory information

- Taste
- Smell
- Hearing
- Touch
- Sight
- Vestibular

Hearing

Audio information

Multisensory Integration

- Speech (Audio, Visual)
- Eating (Visual, Auditory, Smell)
- Rainbow (Visual, Touch)
- Cooking (Visual, Touch, Smell)
- Music (Auditory, Touch, Vestibular)
- Walking (Visual, Vestibular, Touch, Auditory)
- Everything is multisensory

The Development Trajectory of Multisensory Integration

Self-motion

- Self-motion
 - Walking
 - Driving
- Cues for Self-motion
 - Visual
 - Vestibular
 - Touch
 - Audio
 - Etc.

Optic flow (visual)

Behavioural

- Relative distance perception
- Heading
- Speed

Function

- Balance
- Object motion
- Self-motion

Disorders

Monopic vision

Inertial (vestibular)

- Otholiths
 - Linear acceleration
- Semi-circular Canals
 - Rotational velocity
- Function
 - Eye movements
 - Heading
 - Gravity
- Disorders
 - Vertigo
 - Motion sickness
 - Falls

Vestibular

Eye and Head Movements

Vestibular illusions

Falling

Virtual reality setup and stimuli

Motion Platform

Visual

Combination of Senses

Possible Models

Visual-Vestibular Integration for Heading

Visual-Vestibular Integration for Heading (conflict)

Why introduce a conflict?

 By introducing a conflict we can see if there is a breakdown of the combination of sense

• We can calculate the weights given to each cue

 To model the observed combined response from the visual and vestibular response

The logic of conflicts

Equally weighted

Vestibular weighted more

Vision weighted more

0

Angle

Vis-Vest
 Vest

20

···· Vis

10

Visual

Combination of Senses

WINNER TAKES ALL

OPTIMAL

COMBINED the better sense

$$JND_{Vis-Vest} = \sqrt{\frac{JND_{Vis}^2 JND_{Vest}^2}{JND_{Vis}^2 + JND_{Vest}^2}}$$

Maximum Likelihood Estimation

$$\widehat{S}_{Vis-Vest} = w_{Vis} \widehat{S}_{Vis} + w_{Vest} \widehat{S}_{Vest}$$
Observed
$$w_{Vis} = \frac{PSE_{Vis-Vest} - PSE_{Vest}}{PSE_{Vis} - PSE_{Vest}}$$
Predicted
$$\widehat{w}_{Vis} = \frac{1/JND_{Vis}^2}{1/JND_{Vis}^2 + 1/JND_{Vest}^2}$$

10 20

Angle

Summary

- The vestibular system is useful
- Sensory information combines in an optimal fashion
- This has also been shown at the neuronal level
- This model extends to most sensory combinations
 - Audio-visual
 - Visual-touch
 - Audio-touch
- Helps explain possible reasons for falls in the elderly

How far did I walk?

 $\frac{dp}{dx} = -\alpha p + k$

Any questions

Institiúid Teicneolaíochta Bhaile Átha Cliath Dublin Institute of Technology

Scoil na nEolaíochtaí Matamaiticiúla School of Mathematical Sciences