Mathematics and Neuroscience

John S Butler School of Mathematical Sciences Dublin Institute of Technology

My background

- Numerical Analysis (Trinity College Dublin, PhD work)
 - Robust Numerical methods of Prandtl Boundary Layer Problems
- Self-motion Perception (Max Planck Institute for Biological Cybernetics)
 - Walking
 - Driving
- Unisensory and Multisensory processing
 - Developmental Disorders (Albert Einstein College of Medicine)
 - Autism Spectrum Disorder, Niemann Pick Type C
 - Movement Disorders (Trinity Centre for Bioengineering)
 - Parkinson's Disease
 - Dystonia

My background

- Numerical Analysis (Trinity College Dublin, PhD work)
 - Robust Numerical methods of Prandtl Boundary Layer Problems
- Self-motion Perception (Max Planck Institute for Biological Cybernetics)
 - Walking
 - Driving (Toronto Rehab)
- Unisensory and Multisensory processing
 - Developmental Disorders (Albert Einstein College of Medicine)
 - Autism Spectrum Disorder, Niemann Pick Type C
 - Movement Disorders (Trinity Centre for Bioengineering)
 - Parkinson's Disease
 - Dystonia

Mathematics and Neuroscience

- Analyse and Model
 - Chemical reactions (micro)
 - Neuronal Activity (micro)
 - Cortical Activity (mezzo)
 - Behaviour (macro)
- Goal to understand
 - Development
 - Combination of sensory signals
 - Learning
 - Disease

Mathematics and Neuroscience

Analyse and Model

- Chemical reactions (micro)
- Neuronal Activity (micro)
- Cortical Activity (mezzo)
- Behaviour (macro)

Goal to understand

- Development
- Combination of sensory signals
- Learning
- Disease

Combination of Senses

Self-motion

- Self-motion
 - Walking
 - Driving
- Cues for Self-motion
 - -Visual
 - Vestibular
 - Touch
 - Audio
 - -Etc.

Optic flow (visual)

Behavioural

- Relative distance perception
- Heading
- Speed

Function

- Balance
- Object motion
- Self-motion

Disorders

Monopic vision

Inertial (vestibular)

- Otholiths
 - Linear acceleration
- Semi-circular Canals
 - Rotational velocity
- Function
 - Eye movements
 - Heading
- Disorders
 - Vertigo
 - Motion sickness
 - Falls

Virtual reality setup and stimuli

Motion Platform

Visual

Combination of Senses

How a Mathematician starts with the Brain

Possible Models

Visual-Vestibular Integration for Heading

Visual-Vestibular Integration for Heading (conflict)

Why introduce a conflict?

 By introducing a conflict we can see if there is a breakdown of the combination of sense

• We can calculate the weights given to each cue

 To model the observed combined response from the visual and vestibular response

The logic of conflicts

Vestibular weighted more

Vision weighted more

- The vestibular system is useful
- Sensory information combines in an optimal fashion
- This has also been shown at the neuronal level
- This model extends to most sensory combinations
 - Audio-visual
 - Visual-touch
 - Audio-touch
- Helps explain possible reasons for falls in the elderly

The Development Trajectory of Multisensory Integration

Institiúid Teicneolaíochta Bhaile Átha Cliath Dublin Institute of Technology

Scoil na nEolaíochtaí Matamaiticiúla School of Mathematical Sciences

<u>Albert Einstein College of Medicine</u> Adam Snyder Brenda Malcolm Pierefilipo DeSanctis **John Foxe**

<u>Trinity College Dublin</u> Hugh Nolan Robert Whelan **Richard Reilly**

<u>Max Planck Institute for Biological Cybernetics</u> Jennifer Campos **Heinrich Bülthoff**

Albert Einstein College of Medicine

MPI FOR BIOLOGICAL CYBERNETICS